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Scott Douglas McKeever 
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Degree of Master of Science in Operations Research 

ABSTRACT 

The desire for highly capable unmanned autonomous vehicles (UAVs), has 
necessitated the need for more research into the problems faced by these vehicles. 
One classic problem faced by UAVs concerns how the vehicle should traverse its 
environment in order to leave the current position and arrive at a desired location. The 
path to this goal location must maneuver the vehicle around any obstacles and reach 
the goal with minimal cost. A variant of this problem tasks the UAV with tracking a 
moving target. In this manner the UAVs trajectory is updated through time to reflect 
changes in the target's location. 

The specific mission addressed in this thesis, is the track and trail mission. This 
mission tasks a UAV with acquiring a target vehicle and tracking the vehicle for an 
indefinite period of time. The goal of this mission is not to intercept the vehicle, but to 
follow the target from a certain standoff distance. One can imagine many applications 
of this mission. One such application envisioned by the United States Navy deals with 
an unmanned underwater vehicle (UUV), tracking an enemy submarine. In addition, 
marine biologists could use such a capability to allow a UUV to follow and record 
valuable information on certain species. 

Planning these paths is conceptualized as a series of network shortest path 
problems. This thesis focuses on planning paths in the plane where the state of the 
vehicle is defined only by its position in space. In addition, a trajectory smoothing or 
path-smoothing component is addressed to eliminate any slope discontinuities as a 
result of the shortest path algorithms. A framework for the moving target shortest path 
problem is created. The resulting path planner is capable of performing the stated 
mission. A detailed simulation of the path planner operating on a UUV in an underwater 
environment is created in order to test the planner's performance. Different variants of 
the path planner are created in order to deal with different problem parameters. The 
resulting path planner is shown to be adaptable to these different conditions and 
effective at tracking a moving target. 
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Nomenclature 

G:       The notation of a network or graph. G=(N,A) 

N:       The set of nodes in a network. Individual nodes are represented as / e N 

A. The set of arcs in a network. The individual arcs are denoted by (ij) e A For 

instance, the arc from node /to node j is defined as (i,j). The arc from node y'to 

node /is (j,i) 

n: The number of nodes in a network (unless otherwise specified) 

m: The number of arcs in a network (unless otherwise specified) 

Cjj. The cost of arc (ij). The cost of moving from node /to node j 

p: The shortest path. Collection of nodes and arcs 

(x,y): Location in cartesian coordinates 

Z: The map of the environment 

Zres Resolution (meters). The smallest possible grid cell in a map is ZresxZres. For a 

fixed grid map all cells are ZresxZres 
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Chapter 1 

Introduction 

The objective of this thesis is to provide an efficient path planner for an 

Unmanned Autonomous Vehicle (UAV), which is tasked with tracking a moving target. 

This problem is characterized in such a manner that allows a succession of network 

shortest paths to meet the desired goals of the path planner. A simulation of the path 

planner as it applies to an actual vehicle is created and helps to validate the 

performance of the path planner. 

1.1    Problem Motivation 

The rapid increase in computer technology has carried over into the burgeoning 

industry of autonomous vehicles. The word autonomy is a buzzword in many of the 

fields of engineering. An autonomous system is one that can perform its designated 

task without the aid of a human or other intelligent operator. The power of computing 

has allowed engineered systems to reduce their dependence on the "human in the 

loop." The promise and implementation of autonomous systems is such that humans 

should live a safer, more efficient existence. Specifically, autonomous vehicles can 

perform tasks in environments too hostile to humans, or tasks that are too tedious. In 

fact, the United States Air Force has already employed the use of an unmanned 

airplane, the Predator, to perform extended surveillance type missions. The Predator 

has performed well in numerous conflicts in the past few years and has provided 

valuable data to the commanders in the field of operations. The type of mission 

performed by the Predator could be very dangerous to a pilot, and the length of flight 

duration could prove too long for a human pilot. Although the Predator is not fully 

autonomous, some of its mission is carried out in an autonomous fashion. The Predator 
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serves as an example of a successful unmanned vehicle and motivates a future with 

more unmanned vehicles. 

A problem frequently encountered in UAVs is the path planning problem. Given 

the current location of the vehicle and a desired location, a UAV typically needs to 

discover how to traverse its environment to the desired location in a cost optimal 

fashion. Typically the environment is composed of a set of threats and/or obstacles. In 

addition, certain constraints may be placed on the vehicle's motion. The measure of 

cost could be time, distance, fuel use, or vehicle safety. Therefore, it is the role of the 

path planner to generate a trajectory from the current point to the desired point while 

avoiding the threats and/or obstacles. In addition, this path should be a path of 

minimum cost. However, many times there exists a tradeoff in cost optimality and 

computation time. Due to limited computing power, and operational constraints on time 

allowed to plan, the path planner must be efficient in its task, even at the sacrifice of 

optimality. 

1.2    General Problem Statement 

The specific problem addressed by this thesis, is the track and trail mission as 

outlined in the executive summary of The Navy Unmanned Undersea Vehicle (UUV) 

Master Plan [5]. The operational environment is underwater, and the vehicle in this type 

of environment is typically referred to as a UUV. The track and trail mission tasks a 

UUV with acquiring a target as it leaves its port and following the target for an indefinite 

period of time. While the approach is designed with this application in mind, the path 

planner should be able to track other types of moving targets. 

The path planner as developed in this thesis is separated into two main 

functional components. The first functional component finds a shortest path in a 

network, and the second component focuses on smoothing that path. The smoothing is 

performed so that the UAV can follow the shortest path as generated by the network 

shortest path. Both of these functions operate within the path planner framework, which 

is tasked with maintaining the correct data interchange between these units. 
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In order to simulate the path planner a specific test environment of operation is 

chosen. Through the cooperation of the Naval Underwater Warfare Center, bathymetry 

data of Narragansett Bay, Rhode Island, was made available. The data is also stored at 

the National Geophysical Data Center and is publicly available [2]. This data is then 

used to characterize the test environment. 

1.3      Unmanned Autonomous Vehicles 

1.3.1        Brief Description 

In creating an autonomous vehicle, one usually attempts to model a system that 

relies on a human operator. The difficulty in creating true autonomy lies in the ability to 

transform the thinking and actions of the human operator into an effective set of 

behaviors and rules by which the autonomous system will abide. In the case of a 

submarine, human operators in the past have been vital to its operation. Some 

subsystems within the submarine consist of navigation, mission planning, task 

execution, propulsion, weapons deployment, etc... Each of these subsystems relies 

heavily on the "human in the loop" and must be carefully modeled in the creation of the 

autonomous vehicle. 

A UAV can be thought of in context of a hierarchy. The highest level process can 

be thought of as the mission planner. The mission planner controls all the major 

functional units of the UAV. These functional units could include navigation, situational 

awareness, control, and plan generation. These functional units then control the 

processes that are internal to these functions. For instance, map maintenance may be 

a function internal to the situational awareness block. The mission of a UAV is 

planned, and carried out on a high level by the mission planner. As the mission 

progresses through time the mission planner controls how each of these functional units 

are invoked. 

Another way to characterize how a UAV works is to think of its operation in terms 

of the following diagram. 

19 



^ Deviations 
from 

Expectations 

Sitiation 

Problems . 
I —: 

Opportunities 

Plan 
Generation 

fPecirie) 

Selected 
Plan 

No Abnormal Deviations: 

Continue with Current Plan 

Plan 
Execution 

mm 

Internal & External 
State Signals 

System 
tobe 

Controllec 
Commands, 
Objectives & 
Constraints 

Figure 1.1 OODA LOOP 

This diagram is known as the OODA loop (Observe, Orient, Decide, and Act), 

and is frequently used within the military to assess the ability of a unit to successfully 

carry out its mission [8]. It attempts to organize actions performed by the unit into one 

of four major blocks. These four blocks (Orient, Observe, Decide, and Act), are equally 

applicable to a UAV. If the UAV can successfully carry out this loop in the context of its 

mission, then the mission will be successful. 

The monitoring (Observe) block can be characterized as the vehicle's ability to 

correctly incorporate information about its state and environment. The diagnosis 

(Orient) block corresponds to the vehicle deciding which actions need to be performed 

in the future, given the current data from the monitoring block. The plan generation 

(Decide) block of the OODA loop is the focus of this thesis. In this block, the actual 

plans of action are created. Depending on the results of the diagnosis block, certain 

functional units within the plan generation block may be activated. In fact, the path 

planner fits completely within this block. After a feasible plan is generated, the plan 

execution (Act) block sends the commands to the vehicle actuators. As the plan is 

executed, the sensors constantly update the state and/or condition of the vehicle. If the 
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monitoring block senses the need for a new plan, then the entire loop is invoked once 

again. 

1.3.2        AMMT Example 

Under a program called Autonomous Minehunting and Mapping Technologies 

(AMMT), Charles Stark Draper Laboratory built the UUV shown it the picture below: 

This vehicle demonstrated the ability to operate in an unknown environment, 

identify various underwater mines, and generate a map of the environment. The 

planner was not concerned with moving target identification, and for a given invocation 

of the planner the data (i.e. the map) was considered fixed. The vehicle was designed 

to plan in relation to position and vehicle heading. Many technical challenges remained 

after producing this vehicle. Namely, improvements to the trajectory generation and the 

production and maintenance of the map and underlying network were singled out as 

needed advances [10]. These lessons learned motivated the use of a 2-D grid map as 

both the map and the underlying network. This choice simplifies both the trajectory 

generation and the maintenance and production of the map and network. 

1.4    Network Shortest Path 

The moving target path-planning problem can be approached many ways. This 

thesis utilizes shortest path algorithms to perform a majority of the path planner's 

functionality. The first step taken is converting the environment into a network 

representation. Next, a shortest path is found on the network in relation to a cost metric 

-21 - 



of choice.   Finally, the path planner performs any necessary changes to the path, and 

passes commands to the vehicle's actuators. 

A breadth of algorithms exists for solving the network shortest path problem. 

This thesis gives an overview of the following algorithms: Dijkstra, A*, and D*. The 

algorithm implemented in the simulation is the D* algorithm with Dijkstra like 

performance characteristics. 

The moving target scenario is accomplished as a series of successive shortest 

paths. The first path is computed from the UAVs initial position, and all other plans are 

computed from a target location to the next target location. The path from seeker to 

target is updated, as information from the successive shortest path computations 

change. The details for how the path is created are given in Chapter 5. 

1.5    Contributions 

This thesis demonstrates the applicability of solving a series of network shortest 

path problems in hopes of tracking a moving target. The simulation as discussed in the 

final chapters, demonstrates the usefulness of the techniques developed for the path 

planner. The success of the approach should motivate future UAVs, tasked with 

tracking a moving target, to employ such a path planner. 

The contributions are listed below: 

1) Problem Formulation 

• Creating the network as an overlay on the map 

• Transforming the moving target tracking problem into a series of 

shortest path algorithms 

2) Path Smoothing 

• Solving the smoothing problem as a linearly constrained quadratic 

program 

• Convex Approximation of Curvature Formulation 
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• 2-Turn Procedure 

3) Implementation of Path Planner 

• Integration of Path Smoothing with Shortest Paths 

• Demonstrates the capabilities of the Path Planner 

The path planner designed in this thesis may be used in the development of an 

on-board path planner for future Navy UUVs. The work performed in this thesis 

demonstrates the ability for an autonomous vehicle to track a moving target, while 

traversing an environment with obstacles. 

1.6    Organization 

The main body of the thesis is divided into four chapters. The first two chapters 

provide the background necessary to develop the moving target path planner. The first 

background chapter gives an overview of network shortest paths, how the environment 

can be represented as a digital map, and the creation of the network form this digital 

map. The following chapter details a few approaches to smoothing the paths as output 

by shortest path algorithms. The next two chapters describe the path planning 

approach and provide some computational results. Chapter 4, gives a detailed 

description of the path planning algorithm. Chapter 5 takes a detailed look into how the 

path planner performs on specific test cases. Chapters 4, and 5 constitute the majority 

of the contribution made by this thesis. Finally, a conclusion chapter provides a 

summary of the path planning method as well as recommendations for future work. 
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Chapter 2 

Network Shortest Path 

2.1 Overview 

This chapter provides background on the network shortest path problem and 

algorithms. In addition, the characterization of a vehicle's environment and the 

transformation of that characterization into a network structure are discussed. This 

representation of the environment as a network allows the path planning problem to be 

interpreted as a shortest path problem. Furthermore, this chapter provides the 

motivation for an efficient moving target planner. Lastly, a section is devoted to issues 

of implementing a shortest path algorithm onboard an actual vehicle. This entire 

chapter sets the stage for the need for trajectory smoothing (Chapter 4), and an efficient 

moving target planner (Chapter 5). 

2.2 General Problem Description 

The shortest path problem is one of the most common and useful problems in all 

types of network applications. Applications of network shortest paths are seen in many 

areas, such as UAV path planning, internet networking, traffic networks, and large-scale 

supply networks to mention just a few [7]. A shortest path in a graph, G, is defined as 

the minimum cost path from some node s (source), to some node t (target). A path, ppjj, 

is the collection of arcs and nodes from node /'to node j. The total cost of the path, p, is 

the sum of all c^ such that /,/ e p. Formally, the formulation looks as follows: 
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min ]T Gift 

subject to: 

i j 

1, ifi=s, 

-1, //"/=?, 
0, otherwise 

*,e{0,l}   V(i,y)eA 

(2-1) 

In (2-1), Xg=lif(iJ)B pathp,x=0if (ij)i path.   The shortest path problem (or 

min-cost path problem) is a special case of the min-cost flow problem with the net flow 

at each node, b(i) , equal to zero except at the start and goal nodes [7]. 

The above formulation can be generalized to the case where the source and 

target move through time. The shortest path formulation, 

subject to: 

j          j 

1, ifi=s_, 
T 

bj- -1, ifi=t , 
T 

0, otherwise 

4*{ 0,1}   V(i,;)eA 

VieW (2-2) 

specifies the shortest path in G at a specific time, T = t. This formulation assumes c,j 

does not change through time. This model is essential the static shortest path at a 

snapshot in time. In this model no restrictions are placed on the source and target 

information. 
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In the case of computing incremental shortest paths to a moving target, more 

information is known. First we discretize time, so that Te {l,..Tf,} and we let PT = 

shortest path at time T. Assume that as a seeker travels along P1, information about t2 

(target at T2) is discovered. A new shortest path from the current location to the new 

target must then be found. The path will be computed form a new source to a new goal. 

It is known that sTe PT1 . In the case of tracking a moving target, the most general 

assumption about the target is chosen. Basically, no information about the target's 

position at T+l, is available at time T (or before). Essentially, the problem is still a static 

shortest path problem, at snapshots in time. 

2.3    Map and Network Representation 

All autonomous vehicles must have the ability to interface with a discrete 

representation of their environment. The type of representation chosen can have a 

large affect on the underlying network representation, and path planning performance. 

Efficiently computing shortest paths relies on a network representation of the variables 

and data as shown in (2-1). Frequently, the discrete representation of the environment, 

herein termed the map, and its structure can be used as a representation of the 

network. Using the map in this manner eliminates the need to transform data from the 

map into a separate storage for the network. 

2.3.1        Map Overview 

Many vehicles operate in relatively unknown environments and are responsible 

for sensing the environment and creating a discrete representation of that environment. 

However other vehicles, may operate in well-know environments and have access to 

excellent a-priori representations of that environment. This discrete representation is 

herein termed the map. In the context of path planning, the environment is usually 

analyzed in terms of traversal cost. An element of the environment with infinite traversal 

cost, is an obstacle. In addition, varying terrain may incur different traversal costs. For 

example, suppose the vehicle of interest is a car. The car should know the difference 

between a highway and a dirt road. Both types of terrain may allow travel, however the 
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highway is much faster and cheaper to traverse. Due to mission requirements, the 

vehicle may need to store all types of information about its environment. For example, 

in AMMT, mine location was paramount to the mission. However, in the context of path 

planning, information that is not pertinent to generating a path will be ignored. 

How is the environment discretized? The answer to this question is dependent 

on the operational environment, vehicle capabilities, and the mission. However, almost 

all applications attempt to divide the environment into polygons in the 2-D 

representation, or polyhedrons in the 3-D representation. Most 2-D discrete 

representations split the environment into a set of squares, or grid cells. In a 3-D world, 

the extension to a cube is made and the environment is now represented as a 3-D 

matrix. Each element of the matrix then stores a cost. Often each cell can be 

represented as either a 0 or 1. A 1 value represents an obstacle, and a 0 represents 

free space, in this setting all cells with non-zero value are equal in terms of traversal 

cost. For the remainder of this thesis, the 0-1 representation is used. In the most 

general setting, the value stored in each cell should be set to some positive number, as 

a measure of relative traversal cost. If the 0-1 representation is used, and the 

environment is relatively obstacle free much of the storage is wasted in storing free 

space. For a more efficient representation of free space see section 2.3.3 on 

quadtrees. 

Another consideration in map storage is the resolution. Frequently, the 

resolution is limited by on-board memory, and the path planner's algorithmic 

performance. Sometimes a local map with better resolution may be needed to better 

represent the environment close to the vehicle. Clearly, accurately representing an 

obstacle 10 km from a vehicle is less important than accurately representing an 

obstacle 10 meters from the vehicle. The global map can be used for path planning, 

while the local map can be used as a means to update the global map and as 

information for obstacle avoidance. This approach is taken by many unmanned vehicle 

projects, including the Mars Autonomy Program, at Carnegie Mellon University. 

Obstacle avoidance behaviors are alternatives to planning methodologies. These 

behaviors  are  largely reactive  in  nature.     Even  though  obstacle  avoidance  (or 
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emergency plans) are an important behavior on-board a UAV, they are not developed in 

this thesis. 

2.3.2 Fixed Grid 

The map as a fixed grid is an intuitive choice of environment representation. 

Essentially a matrix represents the environment with the elements of the matrix 

representing the center points of each grid cell. In the context of an underwater 

application, each grid cell can store the depth of the ocean at that location. If one wants 

to know if an obstacle exists at a certain depth, each grid cell is checked for the stored 

depth at that location. Therefore, at a certain depth, a binary map can be stored using 

the following argument. A grid cell (i,j) is defined as the square of size Zres x Zres 

centered at location (Zres % Zres*j), where Zresis the resolution of the map. Obstacles 

are stored as a 1, such that if an obstacle exists within cell (i,j), Z(i,j) =1. Likewise if the 

cell (i,j) is free of obstacles, then Z(i,j)=0. The picture below illustrates how an obstacle 

is stored in a fixed grid representation. 

Discrete 
Representation 

Figure 2.1 Discrete Representation of an Obstacle 

Figure 2.1 the obstacle on the left part of the figure is discretized to the version 

on the right. The map on the right is represented as all O's except for the black areas 

that are assigned a value of 1. Clearly, the resolution of the map, Zres, will determine 

how close the discrete version maps the original obstacle. 

29 



2.3.3        Quadtrees 

A more efficient storage of the map, can usually be accomplished through the 

use of quadtrees. This type of structure attempts to store data in blocks of varying size. 

In this manner large contiguous regions of free space can be represented as a single 

element in the quadtree representation [11]. A quadtree begins with the environment 

labeled as one large square. If an obstacle exists within the large square then the 

square is subdivided into four blocks of smaller size. A block is selected and is checked 

for an obstacle within that block. Similarly if an obstacle exists, the block is divided 

again into fourths. If there exists no obstacle within a block, then that block is divided 

no further. This logic progresses until cells of smallest grid size represent all obstacle 

regions. If further storage gains are desired, then grid cells labeled as obstacles can be 

grouped together. In order to see the storage gains, imagine a n x n grid of free space. 

A fixed grid representation will store n2 zeroes, while the quadtree will story only one 

zero. Clearly, in sparse (low obstacle density) environments, there exists great 

advantage to such a structure. However, as the obstacle density increases, the 

advantage of such a structure decreases. In addition, the tree structure that results is 

more complicated to store and interpret than a fixed-gird structure. 

31 
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Figure 2.2 Quadtree Representation 
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Figure 2.2 shows a typical quadtree representation of a single obstacle. The 

space of interest is 16 x 16 grid cells. The full fixed grid representation takes 256 cells 

as opposed to the quadtree representation of 31 cells. The only nonzero cells in Figure 

2.2 are 7, 17, 16, 21, 22 27, 26, and 10. The fixed grid representation would have the 

same number of nonzero cells but many more zero cells. For a more detailed review of 

quadtrees and other related data structures see Samet's overview on the subject [12]. 

Stentz, has demonstrated the use of a more complicated data structure, the framed- 

quadtree. This type of structure frames every block in the quadtree with cells of 

minimum resolution. This type of structure, while more cumbersome in storage than the 

normal quadtree, is specialized for path planning [17]. 

2.4    Network Representation 

As previously presented in the nomenclature section a graph (or network) G is a 

collection of nodes and arcs that connect those nodes. Somehow the information about 

the environment needs to be represented as a network. Representing the environment 

in a graph allows for shortest path computation. Many approaches in the area of path 

planning bypass the network storage problem and use the representation of the 

environment (with some additional information) as the network. Other approaches, 

acquire information from the environment (or from the map) and build a separate 

network based on this information. Each of these two methods have their advantages 

and disadvantages. 

2.4.1        Network Representation using a Fixed Grid Map 

If the choice of map representation is a fixed grid, the use of this map as a 

network is straightforward. All that is needed is a set of nodes and arcs. First, let each 

grid cell represent a distinct node. Therefore, if the environment is represented asnxn 

grid cells, there are n xn nodes in the network. Now, the arcs need to be identified. Let 

two nodes /'and jbe neighbors if an arc (i,j) e A. Therefore, neighbor(x) is defined as 
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the set of nodes reachable from node x along a single arc emanating form node x. Let 

\neighbor(x)\ be defined as the cardinality of the set neighbor(x). For simplicity, let 

\neighbor{x)\ equal a constant for any interior node x. An interior node is a node in the 

network whose corresponding location in the graph is sufficiently far from the boundary 

of the map such that a single arc emanating from node x will not cross the boundary of 

the map. Therefore, the size of neighbor(x) needs to be determined before the arcs in G 

can be defined. The simplest case is \neighbor(x)\ = 4. In this case, 4 arcs emanate 

from every node in the network. In the terms of the map, 4 moves (left, right, up, and 

down) are possible from every grid cell. If \neighbor{x)\ = 8, then diagonal moves are 

allowed. Given \neighbor{x)\ = 8, all cells adjacent to the cell corresponding to node x 

are reachable along one arc. If \neighbor(x)\ = 16, the neighbor structure for node x is 

illustrated in the following figure. 

15 1 

13 14 16 2 3 

12 X 4 

11 10 8 6 5 

9 7 

Figure 2.3 Neighborhood Structure 

All numbered cells/nodes are elements of neighbor(x). These sixteen cells are 

chosen, because they uniquely define all possible moves to any cell that is within 2 cells 

of node x. In reference to Figure 2.3, suppose a move is desired to the non-numbered 

cell immediately to the left of cell #12. Adding this cell to neighbor(x) is frivolous, as 

moving to that cell corresponds to moving to cell #12, redefining cell #12 as node x, 

computing the new set {neighbor(x)), and moving to the new cell #12. In general, 

\neighbor{x)\ = 2d+2, where de[2,...,n] and is defined as the desired distance (in cells) 
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from x. For example, if one chooses to include moves of length 3 cells, 

\neighbor(x)\ = 32.    Establishing the neighborhood in this manner, identifies all arcs 

emanating from all interior nodes in G. Identifying, arcs emanating from non-interior 

nodes, translates to using the same construction as above, but eliminating those arcs 

that cross the boundary. 

Identifying the costs of each arc is also needed for the network representation. 

In general, if the transition from node / to node j is feasible a cost, c,j exists that is a 

measure of the cost of that transition. A transition from node /'to node /' is feasible if the 

transition does not cross into an obstacle, and the transition is within the modeled 

dynamics of the vehicle. If node j is an obstacle, assign GJ = M, where M is larger than 

any feasible path in the graph. This construction will eliminate the consideration of this 

arc (i,j) in the shortest path. Another approach would be to eliminate node j from the 

neighborhood of node /'. Each method is acceptable. How the cost is quantified, 

depends on the application. In this thesis, the euclidean distance metric is the cost of 

choice. However, one may wish to use transition time, vehicle safety, or any of a host 

of other cost metrics. Different metrics may result in different types of paths. If 

transition time is chosen, the resulting path is the shortest time path. If vehicle safety is 

chosen as the metric, the resulting path is the safest path from start to goal. Cost 

metrics that combine time and safety could be chosen, and the resulting shortest path is 

optimal in the manner that time and safety were combined in the cost metric. 

On 2-D and 3-D graphs, using the euclidean distance metric produces shortest 

euclidean paths, constrained by the movements as identified by the neighborhood 

structure. For any node X e N, if all other nodes Vare elements of neighbor(X), then the 

shortest path produced is the shortest euclidean path. However, choosing such a 

neighborhood structure, creates 0(n4) arcs in G. Constraining, the neighborhood size to 

16, results in 0(r?) arcs in G. As will be discussed later many shortest path algorithms 

search all arcs emanating from a node. Therefore, keeping the neighborhood size 

sufficiently small results in paths that may be longer than the actual shortest euclidean 

paths. However, this tradeoff is acceptable in terms of the decreased computational 

complexity. 
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2.4.2        Extensions to Fixed Grid Representation 

Many times conditions arise in implementing shortest path algorithms that 

warrant better representations of the vehicle in the network. The cost of an arc may rely 

on more than just the distance between two locations. For instance, the cost of an arc 

may rely on the state and/or configuration of the vehicle. If one assumes the speed of 

the vehicle is constant, and the vehicle is operating in the plane, a vector of position and 

heading can represent the state of the vehicle. Other state variables may exist, but the 

vector composed of position (x,y) and heading, 0, is frequently sufficient for many 

applications (i.e. the case where a vehicle cannot follow a jagged path). If 8 is 

discretized, the network is now a 3-D grid. A node / now represents location and 

heading. In this setting, the cost metric chosen will now rely more closely on the 

dynamics of the vehicle. The length of an arc (i,j) and the location of that arc in space, 

is largely dependent on the heading at node / and at node j. Checking the validity of an 

arc (ij) now becomes more important. For instance, an arc (i,j) may appear feasible, 

but due to vehicle dynamics the arc (ij) may cross into an obstacle. Therefore, before 

any path computations are performed, invalid arcs will need to be eliminated. 

Suppose 0 has 36 discrete levels (i.e. Qe{0,10,20,30...360}). Therefore, at any 

cell location (x,y), there exists 36 nodes in G. Now if the network is connected through 

the neighborhood structure previously defined (\neighbor(x)\-l6), and all levels of 6>are 

reachable from any other level, each node in G will have 576 (16*36) arcs emanating 

from itself. Bear in mind that increasing the dimension of the grid increased the number 

of nodes from n2 to 36H2 (where the planar grid \s n x n cells). Assuming the 

environment is free of obstacles, the original 2-D network had approximately 16rf arcs. 

The new 3-D graph has approximately 20736rf arcs (576*36rf). The only manageable 

way to deal with such a growth in the number of arcs is to limit the number of levels in 0 

reachable from a fixed heading. However, limiting the transitions, does nothing to 

address the increase in the number of nodes in G. As can be seen, the explosion in the 

size of G, as the dimension of the graph grows, severely increases the size of the 

problem. For this reason, the remainder of this thesis will attempt to utilize creative 

methods of planning with a 2-D map and graph. The methods must be creative due to 
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the nature of the vehicle, and the types of paths produced by a shortest path algorithm 

in a 2-D grid. 

2.5    Algorithms - Approaches, Descriptions, and Performance 

Many algorithms exist for finding a shortest path in a network. Since the shortest 

path problem is so widespread in its use, many attempts are made to speed up current 

algorithms with advanced data structures. The purpose of this thesis is not to discuss in 

great detail the advantage of using a radix-heap, as opposed to a binary-heap for the 

search. Different algorithms for finding shortest paths in a network may lend 

themselves to different data structures. Rather than present a list of algorithm 

performance using different data structures, an overview of the workings of different 

algorithms will be provided. In addition, insight as to how different shortest path 

algorithms operate in the network as previously defined will be given. 

Some algorithms find paths from source to goal (in that order), while others 

search the network backward from goal to source. Most algorithms can be 

implemented both ways, however in the ensuing description it should be noted that 

some algorithms are be presented form source to goal, while others are presented form 

goal to source. 

2.5.1        Greedy 

Instead of focusing on the global cost objective greedy algorithms typically focus 

on minimizing some local cost. In the context of shortest paths, a couple of definitions 

are needed to motivate a greedy type algorithm. 

1. h(x):= heuristic that estimates cost of path from node xto node t (target or 

goal). h(x) is an acceptable heuristic if it does not overestimate the cost of the 

optimal path from node xto node t. 

2. Furthermore, let h(x);=Euclidean distance from node xto node t (any 

acceptable heuristic could be chosen. In the context of the network as 

previously defined, this heuristic is acceptable). 
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With this definition of the heuristic, the greedy algorithm follows. 

algorithm Greedy 

begin 
s = current node (source); 

while s T£ t (target) do 
Move to node j such that h(j) is minimum j e neighbor(s); 

s = j; 
end 

end 

Figure 2.4 Greedy Algorithm 

The algorithm as shown in Figure 2.4 is not assured of converging on the target 

node. For example, in the presence of obstacles the vehicle may cycle between two or 

more nodes indefinitely. See the figure below for an example of this behavior. 

fl 
c_ t 

K 

Figure 2.5 Greedy Algorithm Getting Stuck 

In this illustration, the algorithm proceeds from s to node x at which point it 

chooses either node 1 or node 2. Once, the current node is set to 1 or 2, the algorithm 

will then set node x as current node.   This looping behavior will continue indefinitely. 
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Clearly such an algorithm is not acceptable for the problem at hand. However, if the 

only knowledge of the network at a current node is the only the set of neighboring 

nodes, then a greedy algorithm is the best one could hope to implement. 

2.5.2        Dijkstra's 

The classic approach to the shortest path problem is Dijkstra's algorithm. 

Dijkstra's algorithm first appeared in 1959 in [4]. This algorithm is probably the most 

widely used for shortest path computation. 

This algorithm is capable of finding the shortest path from source to all other 

nodes in G, or in the reverse implementation, the shortest path from target to all other 

nodes. If all paths are not desired, the algorithm is easily terminated when the target is 

reached. The algorithm essentially, maintains a list, d(i), which is an upper bound on the 

distance from source to node /. As the algorithm searches from the source, some 

nodes are labeled permanent and others are labeled temporary. The distance labels for 

the permanent nodes cannot be decreased. The nodes labeled temporary have 

distance labels that are only an upper bound. The algorithm begins at the source (or at 

the target in reverse implementation) and begins to label nodes in the temporary set in 

the order of smallest distance labels. It chooses a node with minimum temporary label, 

labels that node permanent, and scans all arcs emanating from that node to update 

other distance labels. As the algorithm progresses it decreases the distance label until 

no further decreases are possible. Once a node is labeled permanent, the predecessor 

of the permanent node can be stored. Assuming the algorithm is allowed to find 

shortest paths from source to all other nodes, then the shortest path to node x is 

recovered by following the set of predecessors (sometimes referred to as backpointers) 

from node x back to the source. The formal pseudo-code [7] is provided in Figure 2.6. 

As presented, shortest paths from source to all other nodes are found. 
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algorithm Dijkstra; 

begin 
S := empty; (S = permanently labled nodes) 

S := N; ( S = all nodes not permanently labeled) 

d(i) := oo Vr e N; 

d(s):= 0 and backpointer(s) := 0; 

while |5| < n do 

begin 

let ie S be a node for which d(i)- min{d(j)) : j e S}; 

S := S u node i; 

S := S — node i; 

for each arc(i, j)e A(i)do 

if d(j)> d(i)+ ctj then d(j):= d(i)+ ctj and pred(j):= i; 

end; 
end; 

Figure 2.6 Dijkstra's Algorithm 

If the algorithm is terminated once the target is reached, at a minimum the path 

from source to target exists. If the set of permanently labeled nodes contains more than 

just the target, then the shortest paths to all nodes in the set of permanently labeled 

nodes also exists. The information that exists in the collection of backpointers will later 

be shown to be important in the development of tracking a moving target. 
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^ Path in white 

Source Illustration of permanently labeled nodes 
and exploration pattern of Dijkstra's algorithm 
where lneighbor(x)l =4. 

Figure 2.7 Dijkstra's Search Pattern 

Figure 2.7 illustrates how Dijkstra's algorithm fans from the source to all other 

nodes in its search for the path to the target. In Figure 2.7 all shaded nodes are in the 

set of permanently labeled nodes. Thereby, if the backpointers at each node are 

stored, a unique path exists from the permanently labeled nodes to the source. With 

neighborhood structures as previously defined, the set of permanently labeled nodes 

will tend to fan out from source (or target in reverse implementation) as seen in Figure 

2.7. 

Various implementations of Dijkstra's algorithm have been developed through the 

years, in attempts to obtain better performance. The generic algorithm runs in 0(n2). 

Depending on the implementation chosen, the best time bound is 

0(min{m+nlog n,   mloglogC,   m+n^logC}),   (C  is   a   constant  satisfying   certain 
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properties specific to each algorithm). The details of the complexity arguments are not 

included, but can be found in [7]. 

2.5.3        A* 

A* search is a slight modification to Dijkstra's search that performs extremely well 

on grid type networks. Pearl [9] provides a detailed description of A* search. A* is able 

to utilize a heuristic estimate of the length of the path at each node, in an attempt to 

eliminate needless searching of the graph. If the heuristic estimate is a lower bound on 

the actual path cost, then an optimal path will result from the A* algorithm. In 2-D grid 

networks, an acceptable heuristic is the Euclidean distance to goal, 

h(0=^j(xi-xgoalf + (yi - ygoal f, 

where   x, := x coordinate of node(i), (2-3) 

y, := y coordinate of node(i). 

The A* algorithm can be thought of as nothing more than Dijkstra's algorithm with 

a different set of costs, cj, instead of ctj. This transformation applies when the heuristic 

does not overestimate the distance to goal. 

cl=crh(i)+h(j)   V(i,j)cA (2-4) 

The following figure shows the search savings using A*. The search savings are 

clear when comparing this figure with Figure 2.7 
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Figure 2.8 A* Search Pattern 

The worst case performance of a shortest path algorithm using the transformed 

costs as dictated by A*, is still the worst case performance of the algorithm without the 

transformed costs. Since the heuristic is only a lower bound on the actual path cost, an 

acceptable heuristic is 0. In this case the heuristic has provided no information and the 

A* algorithm has provided no advantage. However, as illustrated in Figure 2.8 the 

typical performance (especially on grid-based networks) of A* should be much better 

than the typical performance of a generic shortest path algorithm. 

2.5.4 D* 

The previous two algorithms are designed to work well on static networks. 

Stentz in [14], [15], and [16], has developed an algorithm that is capable of performing 

shortest path computations on dynamic networks. In general, this algorithm is capable 

of handling changing arc costs while the problem solver is traversing the graph towards 
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the target. The costs may change as the vehicle (or problem solver) discovers more 

accurate information about its environment. If the vehicle is tasked with sensing its 

environment, it may discover new obstacles en-route to the target. These new 

obstacles can then be represented by new arc costs (per previous discussion on infinite 

or large arc costs). Unlike some dynamic shortest path problems, frequently seen in the 

literature, this algorithm assumes no structure in the way arc costs may change. The 

ability to handle the dynamic network in this manner is paramount to the performance of 

the vehicle's path planer. The details of this algorithm are given in Appendix A. It 

should be noted that in the static case this algorithm is essentially Dijkstra's algorithm. 

Therefore, the running time for this algorithm in the static case will be 0(rf). In his 

summary, Stentz notes that D* "is able to handle any path cost optimization problem 

where the cost parameters change during the search for the solution" [15]. 

Furthermore, he states "that the algorithm is most efficient when changes occur near 

the starting point in the search space, which is the case with a robot (UAV) equipped 

with an on-board sensor". The pseudo-code for this algorithm is provided in Appendix 

A. However, for more information see [14], [15], and [16]. 

2.5.5        Moving Targets and Shortest Path Algorithms 

This section provides a quick overview of the moving target problem and how the 

previous algorithms can be configured to work in this scenario. Generally, moving the 

target is a bad thing to do if one wants to recompute a new shortest path. Simply, the 

cost from any node to the target is dependent on where the target is located. Changing 

the location of the target will invariably change much of the data, and variables in a 

shortest path problem. 

The greedy algorithm will suffer the least in terms of performance for the moving 

target problem. The greedy algorithm only relies on local information to find a path. 

However, the problems inherent in the greedy algorithm, as previously explained, still 

exist in the moving target scenario. 

When the general Dijkstra's or A* algorithm is used in the moving target scenario, 

a full replan is needed to compute a path to the new position of the target. A full replan 
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is defined as reinitializing the algorithm with new source and target information, and 

then performing the algorithm to find the new shortest path. Frequently, performing the 

full replan is not feasible for a vehicle wishing to track a moving target. The D* 

algorithm may perform better than performing a full replan, but noting the warning of 

changes to the target, it is doubtful that the D* algorithm will compute new paths as 

efficient as one may need. 

Using Dijkstra's or A*, to perform a full replan, will have the same worst case 

bound as the static shortest path algorithm. If quick computation of paths is essential to 

convergence on the moving target, performing full replans may not yield run-times of 

acceptable length. In the case of grid maps and sparse obstacles, the number of cells 

or nodes permanently labeled tends to be a function of the distance from source to 

target. In addition, the running time of the algorithm is directly related to the number of 

permanently labeled cells. This statement is clearly illustrated in the no obstacle case 

as shown in Figure 2.7. If the vehicle begins far away from the target, recomputing 

paths to a moving target while advancing along those paths may cause the vehicle to 

wait while the shortest path computations complete. If the target is moving through the 

environment, limited by its maximum speed, it may be more beneficial for the seeker to 

travel towards the target rather then along an optimal cost path. The reason for this 

benefit may lie in the assumption that traveling towards the target is less 

computationally expensive than travelling along an optimal path. This concept is 

illustrated in the following argument. Assume the vehicle is travelling along a path 

computed with the most recent target location. If the target location is changed and a 

new path is computed, the previous path may still do a good job at getting the vehicle 

close to the target (assuming the target locations did not change too drastically). This 

method, expends no computation in moving towards the target. Therefore, the vehicle 

could sacrifice the optimal solution and just travel along the old path. However, if this 

logic continues, the seeking vehicle will never track the moving target. If paths could be 

efficiently maintained from goal to goal, then once the original goal is attained, the 

seeking vehicle could travel along the paths computed from goal to goal. This idea is 

the motivation for the moving target path planner as later described in Chapter 5. 
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2.6    Shortest Path Algorithms on a UAV 

Implementing a shortest path algorithm on a UAV, can result in numerous 

difficulties. UAVs are typically faced with performing complex tasks in spite of their 

limited computing power and memory. Therefore, a computationally cheap and robust 

path planner is essential to the success of a UAV. However, most important is the 

marriage between the shortest path code and the trajectory generation code. Once a 

shortest path is found, a trajectory must be found that follows that path. The inability to 

follow the path may lead to unsafe travel for a UAV. 

One issue to always consider in implementing path planning on-board a UAV, is 

the dynamics of the vehicle. In a perfect world, a vehicle could follow any path 

produced by the shortest path algorithm. If a vehicle operates in the plane, typically, 

paths produced by shortest path algorithms (on grid based networks) are jagged (not 

differentiate). Most vehicles cannot follow such a path, and must generate a trajectory 

that is within its dynamics and closely approximates the shortest path. Following an 

approximating trajectory, subjects the vehicle to increased likelihood of obstacle 

collision. If an approximated trajectory is followed, assuring the safety of the trajectory 

is essential to the vehicle's safety. 

The methods as outlined in Section 2.4.2 (i.e. using the heading in the planning) 

will produce paths that are smooth and admissible in terms of the vehicle dynamics. 

However, as previously stated, computing paths with this type of network can be 

computationally burdensome. Therefore, the remainder of this thesis attempts to create 

a planner that is capable of operating on a 2-D planar grid 
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Chapter 3 

Path Smoothing 

The path returned by a shortest path algorithm is composed of a collection of 

arcs and nodes. In the context of a 2-D grid map, each node refers to the center of a 

grid cell and an arc refers to the line segment connecting two adjacent grid cells. The 

resulting path is jagged and cannot be accomplished by most UAVs. Specifically, most 

UAVs cannot experience instantaneous changes in velocity as implied by the jagged 

portions of a path. Some vehicles may be able to stop at a jagged portion of the path, 

and then align there heading with the desired heading of the path. If this maneuver is 

possible, then the instantaneous change in velocity does not have to hold. However, 

such a maneuver is generally not desired or feasible for many vehicles. Therefore, 

some type of path smoothing must be employed in order for the ground track to be 

realized by the vehicle. However, smoothing the path may result in a smoothed 

trajectory that is no longer safe. Safety as applied to a trajectory, refers to a trajectory 

that does not hit or cross into an obstacle. The only assurance the vehicle has of safety 

is to stay on the computed shortest path. Any deviation from this path may compromise 

the safety of the vehicle. Subsequently, the deviation from the jagged shortest path to 

the smoothed trajectory is a measure of safety and should be minimized. Techniques in 

the map building (described in Chapter 4) phase can be used to provide margins of 

safety for the vehicle, such that a certain level of deviation is acceptable and safe. 

3.1    Definitions and Introduction 

Let a certain path, p, be defined as a set of n Cartesian coordinates (x, y) and the 

linear segments that connect point j to point j+1. Now, let the vector, X, represent the 

collection of data that corresponds to the x data points, and the vector, Y, to correspond 

to the y data points.   Let X(i) refer to the /" element in the vector X,  V i = 1,...,n. 
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Likewise, let Y(i) refer to the /''element in the vector Y, V\= 1,...,n. Furthermore, let 

P(i) = (X(i),Y(i)) and P = [X,Y]. Figure 3.1 refers to a possible path with the 4 data points 

represented as asterisks, *. 

140 r 

120 

100 - 

45   50   55   60   65   70 

Figure 3.1 Jagged Shortest Path 

Notice that the path, p, as shown above, is jagged and non-functional. Here non- 

functional refers to a path that is not a function (i.e. y is not a function of x). A path in 

the 2-D space will never, in general, behave functionally. In the context of a UAV, a 

trajectory needs to be created that eliminates the jagged nature of p and does not 

deviate too far from p. The need for a non-jagged trajectory is necessitated by the 

inability of a vehicle to follow a jagged path. A smoothed path needs to be generated 

that is within the vehicle's capabilities and does not deviate too far from p. 

Given that p is non-functional, normal smoothing techniques of finding some 

function /, such that y=f(x), will not work. Several approaches to this problem will be 

described with the main emphasis placed on conventional techniques of polynomial 

data smoothing. As implemented, these methods rely on the least-squares formulations 

with linear equality and inequality constraints. The use of the least-squares solution for 
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an over-determined linear system is advantageous due to the closed form solution (i.e. 

low computational expense). However, these techniques are not able to explicitly 

handle the dynamics of the vehicle. In addition, the jaggedness of the path is not 

directly handled. However, the jaggedness can be eliminated as a by-product of the 

functions chosen. Other optimization formulations that are more apt to handle some of 

the problem variations discussed in Section 3.2 can be used. However, these 

formulations will rely on more general optimization techniques and will be discussed in 

Section 3.4. These methods, although more complete in their formulation, will suffer 

from computational expense and may converge to local optimum solutions. 

Other methods that rely on techniques from optimal control are able to 

incorporate the dynamics of the vehicle but suffer from heavy computational burden. 

These methods are able to constrain certain parameters of the dynamic model (e.g. 

rudder deflection, yaw rate, dive rate, etc.) to lie within a certain feasible range. In 

addition, another nice feature of these methods is the ability to constrain the state of the 

vehicle at any time through the trajectory of the vehicle. Typically these optimal control 

methods are employed in off-line applications such as generating trajectories for a 

rocket before the launch occurs. These methods are typically quite computationally 

burdensome and as such are not investigating further. However, as computing power 

increases these methods may warrant further exploration. 

Finally, a hybrid approach is developed. This approach uses the least squares 

formulation, with or without the linear constraints, and blends the result with another 

method that is capable of handling a certain type of problem variation. This approach 

relies on geometric arguments and properties of the vehicle's dynamics. This method is 

the one of choice and is implemented within the larger simulation. 

3.2    Problem Variations 

In the simplest case, the objective is to generate a smoothed trajectory that 

closely follows p. For the simple case, no explicit constraints to the path are provided. 

However, variants to the problem may necessitate placing constraints upon the 

smoothed trajectory.   These variants may include constraining the smoothed path to 
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certain points (e.g. setting the start and end points). In the context of smoothing a 

trajectory, the start position usually must be fixed to the position of the vehicle. 

Likewise, it may be important that the smoothed trajectory completes itself at en exact 

desired location. Let us call these two conditions the START-END constraints. 

Furthermore, the curvature of the trajectory may be constrained to lie within certain 

bounds (the curvature constraint is herein labeled the CURVATURE constraint). 

Curvature is a measure of how sharply a trajectory turns. Finally, specifying the initial 

heading of the vehicle (i.e. slope of the trajectory) at the start point may be an essential 

modification to the simple case. The reason for this constraint lies in piecing one 

smoothed trajectory with another. When piecing two trajectories together one knows 

that the start point for the second trajectory is the end point for the first trajectory. 

Similarly, the initial heading of the second trajectory is the end heading of the first 

trajectory. This restriction is heretofore referred to as the START-HEADING constraint. 

Certain approaches to the path-smoothing problem are more capable at handling 

some of the constraints than are others. However, the ability to formulate a constraint 

with the specified approach may not translate to adequate solutions or acceptable 

algorithmic performance. 

3.3    Polynomial Data Fitting (Unconstrained) 

For the remainder of this section, let us only address the problem of generating a 

smooth trajectory that closely matches the path p and not the problem of explicitly 

creating a trajectory that is within the vehicle's dynamics. Hopefully, the path created by 

trying to closely match p will be within the capabilities of the vehicle. 

3.3.1        Definitions and Development 

Assume that a vector S exists, such that a mapping, f, from S(i) to X(i), and a 

mapping, g, from S(i) to Y(i) Vi = 1,...,n exists. Thereby, two functions fand g could be 

used to estimate any (x,y) pair. Specifically, X(i) is approximated as, Xest(i) = f (S(i)), 

and Y(i) is approximated as Yest(i) = g(S(i)) Vi = 1,...,n. Thus, for a given value of S(i) 

one can recover P(i) through the functions fand g. 
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Two questions remain. How does one find a proper value of S(i) to associate 

with each data point, and how does one find fand gl The most intuitive method (in the 

context of a vehicle) for estimating S would be to let S(i) equal to the time it would take 

the vehicle to traverse along the smooth path to the point [f(S(i)),g(S(i))]. However, 

finding this time variable is highly dependent on /and g. Since the independent variable 

is hopefully created as data, using time will not be acceptable. 

Another choice for S, is the cumulative arc length along the jagged path. If the 

mapping of S through fand g results in a trajectory exactly the same as the jagged path, 

then S is also the cumulative arc length of the trajectory. The closer the smooth 

trajectory is to the jagged path, the better S estimates the actual arc length of the 

smooth trajectory. If the magnitude of the vehicle's relative velocity (i.e. relative to wind 

or current), and the velocity of the current (or wind) are constant, then S is also an 

approximation of the trajectory time. Since time is unavailable as an independent 

variable, let us estimate the length of the arc from [X(1),Y(1)] to [X(i),Y(i)] Vi=1,...,n and 

use this arc-length estimate as S (see [1]). The use of the estimated arc length should 

prove successful in light of velocity assumptions. 

S(J) =o 

5(0 = S(i -1) + J(x(i) -x(i-1))2 + (y(i) - y(i -l))2   Vi = 2,3,...,/i (31) 

Now define vector valued function r(s) = (f(s),g(s)}, where se[S(l),...,S(n)]. The 

first element of the vector, r(s), corresponds to the x variable and the second element 

refers to the y variable. This vector-valued function corresponds to the smoothed path. 

A specific value for s will correspond to a location along the smoothed path. This 

definition of the vector-valued function is needed in later sections. 

How does one estimate the functions, f and g? First, a measure of how well a 

function fits the given data must be chosen. The most widely used method focuses in 

minimizing the sum of the squared errors. Specifically construct the problem in the 

following manner 

49 



n - 

min  ^[jc(0-/(j(0)]     Vi' = l,...,n   and 
1=1 

min ^[y(i)-g{s(i))~\    Vi = !,...,« 
(3-2) 

If a weight on each data point is desired, such that the squared error at a certain 

point is weighted differently than at other points, a vector of the weights, w(i) Vi = 1,...,n 

is created. The formulation now becomes 

min  £w(i)*[*(»')-/(j(0)]2   Vi = l,...,n   and 
i=i 

min Xw(i) *[?(')-£ (*(»))] *   vi = 1.-'w 

i=i (3-3) 

Another formulation, which transforms the problem into a linear optimization 

problem, minimizes the sum of the absolute errors. The transformation involves an 

introduction of new variables, and is given in [3]. 

« . 
min  ^|JC(0-/(^(0)|    V/ = l,...,n   and 

i=i 

n 

min y,\y(i)-g{s(i))\  Vi = l,...,n 
tT (3-4) 

Finally, another popular technique minimizes the maximum errors. This model 

can also be represented as a linear optimization problem, through a similar 

transformation. The weights, w(i), can also be applied to this formulation. 

Given these three optimization models, the forms of the functions are still left to 

be identified. For the remainder of this section, the formulations as seen in (3-3) will be 

used. This formulation is probably the most widely used, and often has a closed form 

solution. If the class of pth order polynomials is chosen to fit the data, the formulation will 

look as follows for the x data: 

Tmn^w(i)[x(i)-(a0+alS(i)+a2s(i)2 +a3s(i)3 +...+aps(i)p)]   V/ = l,...,n (3-5) 
i=i 

and for the y data: 
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min|;w(/)[K0-(Ä+M0 + A^')2+M03+..-+^(0P)]2 Vi = l,...,n (3-6) 

How does one estimate a = (a0, ai,...,ap) (the same will apply to ß)?   a has a 

closed form solution, as follows: 

a = [ATWA Y ATx 

"l    s(\) s(l)2    . -    s{\)p 

1     5(2) s(2)2    . ..   s(2Y 
where A = 1    5(3) 

i       : 

5(3)2    . ..   s(3)p 

1   s(ri) s{nf s(n)p 

w 

w(l)      0 0         0 0 
0 w(2) 0         0 0 
0        0 '•.        0 0 
0        0 0 w{n-\) 0 
0        0 0         0 w(n) 

x(l) 

42) 
x(3) 

x(n) 

(3-7) 

In the above equation w(i) refers to the relative weight one places on the fh data 

point. If all data points are equally important, setting w(i) = c (a constant,) V i=1,...,n is 

correct. 

Many software packages have the capability of efficiently performing the above 

matrix and vector manipulations without explicitly creating many of the above matrices 

as shown in (3-7). 

In the example shown in Figure 3.1, n = 4. The algorithm as it is designed will 

attempt to minimize the squared error only at the 4 data points. Between the data 

points the function will be free to vary and will tend to lie along the piecewise linear 
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segments. Thus, extra points need to be added between the original 4 data points. The 

number of points to be added between the original data points should be proportional to 

the length of the individual segments. Using this logic, long segments will have more 

data points than shorter ones. 

3.3.2        Capabilities 

The least-squares approach as presented has some significant advantages, but 

at the same time is hampered by its inability to explicitly model any of the 

aforementioned problem variations. The model as described is only concerned with 

fitting a pth order polynomial to the data that comprises P. 

Even though the constraints cannot be explicitly defined all hope is not lost in 

incorporating some of these constraints into the model. The START-END constraint 

can be taken into account with careful adjustments of w(i). In the context of smoothing 

a vehicle's trajectory, weighting the initial point is usually extremely important. Through 

repeated testing, allowing YI(1) = 10,000 and w(i)=1 Vi =2,...,n, produces trajectories 

that begin at the desired location. Depending on the importance one places on the end 

point, different w(n)'s can be specified. In the context of this thesis, setting w(n)=1000 

has shown good performance. Utilizing the weighting vector in such a manner is similar 

to Big-M methods in Linear Programming [3]. In this method a constraint or set of 

constraints are relaxed and the amount of deviation from the constraints is penalized in 

the objective function. The weighting scheme essentially penalizes any solution that 

violates the START-END constraint. 

In order to maintain the least squares solution, incorporating the CURVATURE 

constraint and the START-HEADING constraint is impossible. These constraints deal 

with combinations of the variables present in the functions, fand g, and at the least the 

formulation is non-separable with respect to the x and y components. However, later 

sections highlight the techniques used to deal with the CURVATURE and START- 

HEADING constraints in the context of the least-squares result. 
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3.3.3        Implementation Considerations 

Upon implementation the degree of the polynomial, p, must be specified. In 

practice, when dealing with realistic trajectories, setting p=10 through p=15 has led to 

good results. Setting the degree of the polynomial too low yields fits that do not match 

the desired trajectory. Setting the polynomial degree too high (i.e. setting p close to the 

number of data points) will yield a fit that is only good at the data points and poor 

between the data points. In addition, the number of data points used has an important 

affect on the performance of the technique. Repeated analysis has shown that setting 

the number of points for each linear segments at least equal to eight and keeping the 

ratio of points from one segment to another dependent on the relative length of each 

segment is a good choice. 

A simple algorithm for generating the points is provided. First, find the segment 

of minimum length and equally space 8 points on this segment. In addition, put a point 

at each vertex point for this trajectory. Now add q points for the remaining k segments. 

For a specific segment, /', find the ratio of its length to the minimum length segment 

(ratio>1). Now, multiply this ratio by the number of points used for the minimum length 

segment. Rounding this result, yields the appropriate number of points that are equally 

spaced on segment / (as before add points for the vertices and do not repeat a 

previously stored vertices). This method should prevent the creation of excessive 

points. Figure 3.2 shows the creation of the data points as described (using 2 points 

instead of 8). Using too many points has the drawback of requiring excessive 

computational time. If we assume the computation of «in (3-1) is an Ofn2) operation, 

doubling the number of points will quadruple the number of steps in the computation. 

However, using too few points will create a smoothed path, which does not adequately 

meet the objective. 
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Figure 3.2 Jagged Path with Extra Points 

Now that the vectors X,Yand Ware specified, all that remains is to compute the 

least squares solution. Figure 3.3 shows both the desired path and the resulting 

smoothed trajectory. In this example p = 11. 

20       25       30        35        40       45        50       55        60       65 

Figure 3.3 Typical Smoothed Path 
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The methods as developed to this point are able to deal with the general problem 

of path smoothing. No constraints have been imposed on the estimation of f and g, 

which are specific to the creation of a smooth path for a UAV. As seen in the section 

describing problem variations, the general result as seen in Figure 3.3 may be 

inadequate to meet specific vehicle constraints. Thereby, further discussion on 

implementation of this method, as developed, is premature. 

3.4    Polynomial Fitting (Constrained) 

The method as developed in Section 3.3 is unable to handle any of the problem 

variations explicitly in its formulation. As seen in Section 3.3.2, only the START-END 

constraint is effectively handled through careful adjustments to the weighting vector. 

One may pose the following question - How does one implement a polynomial type data 

fitting in the presence of the two additional constraints, START-HEADING, and 

CURVATURE? The need to include these conditions sacrifices the ability to use the 

least-squares solution. The new model must attempt to minimize some objective 

function while satisfying the three constraints (as described in Section 3.2). 

3.4.1        Formulation 

This section will introduce the formulation of the constrained optimization model. 

Alternate objective functions could attempt to minimize the added error for both x and y, 

or minimize the sum of the maximum errors. The form chosen, attempts to minimize the 

error norm squared. The squared error at a specific s(i) equals the squared error due to 

estimating x(i), plus the squared error associated in estimating y(i). Let 

e(i) = [x(i)-f(s(i)),y(i)-g(s(i))].   The following figure is a graphical representation of 

the error at a specific point. 
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The error vector 

at the 12th  data point 
(*(12), y(12)) 

fxest = /(*(12)> 

Figure 3.4 Illustration of Error Vector 

A solution that minimizes \\e(i)\\2, will also minimize \\e(i )ll. Conveniently, the 

objective function is written in terms of the squared magnitude, eliminating a square 

root. In the case where fand g are polynomials, the objective function is essentially the 

combination of the two functions in (3-2) 

NLP:wki f.& 

2    n 
X [x(i)-f{s(i)j]   + X [>(i)-*(*(«))] 
i=l i=l 

,2> 

) 
= min X |^(0" 

i' = l 

subject to: 

f(s(l)) = -XQ 

gW)) = >0 
/(*(«)) = = */[ 
g(s(n)) -- = yf. 

K(s), 'curvature Vse[0,s(n)]< 1——\ 
turn radius} 

(3-8) 

(3-9) 

(3-10) 
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ir(0) = t[üx,Üy~\, where t > o} 

5(1) = 0 

< S(i) = S(i-1) + <J{x(i)-x(i-l)f+{y(i)-y(i-l)f 
Vi = 2,3,...,n 

(3-11) 

(3-12) 

Equations (3-9), (3-10), (3-11) represent the constraints as described in the 

section on problem variation. The first three constraints are the START-END, 

CURVATURE, and START-HEADING constraints, respectively.. 

In (3-11), [üx,üy] is the initial unit velocity vector. The variable t is a new variable 

in the model, and must be non-negative to ensure that the initial heading vector, Kty of 

the smooth path aligns with the initial velocity vector. 

Constraint (3-12) is the method by which the data, S, is created and is included 

for completeness. It should be noted that (3-10) could be discretized in the following 

manner: 

2.  < max K(s(i))curvature - 
[i=l..n 

1 

turn radius (3-13) 

This discrete representation necessitates n evaluations of the curvature function, 

as opposed to finding the maximum curvature value over a continuous variable. 

Constraining the curvature at specific locations may not ensure that the curvature 

constraint is violated at points between those chosen locations. However, choosing 

enough points on the trajectory (these points denote where the curvature constraint is 

used) should ensure the curvature constraint is satisfied for all points along the 

trajectory. Similar to previous methods the objective function could be augmented by 

some large constant times the maximum curvature. In this way, the objective function 

would attempt to minimize both the squared error vector and the curvature. 

The curvature function is given by, 
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K(s). 
r(s)xr(s) 

\\r(s)\\ 
Vse[SQ),...,S(n)] (3-14) 

3.4.2 Discussion 

This optimization problem, while formulated in a straightforward manner, does 

not lend itself to easy solution methodologies. The variables in the aforementioned 

model depend on the form the functions, f and g, take. As used in previous 

approaches, the class of pth order polynomials defines the form that the functions f and 

g take. If our two functions are defined as seen in the least-squares model, the 

variables of interest are a, and ß. This NLP (non-linear program) cannot be separated 

into two separate problems (one problem for the x data, and the other for the y data). 

This non-separable property is due to the interaction of the a, and ßs in the constraints 

(3-10) and (3-11). After some manipulation the objective function can be rewritten as, 

mm a,ß c* (3-15) 

where a, and ß are vectors of length p, and correspond to the coefficients of the 

polynomials describing f, and g. C is a matrix, with 2n rows and 2p columns, and d is a 

vector of length In. The matrix C is data, and corresponds to 

A   0 

0    A 
(3-16) 

where A is defined in (3-7).   Some of the constraints can be rewritten in the following 

manner. The dvector is the data vector composed of the data X,Y. 

X 

Y 
(3-17) 

The 1st set of constraints become linear equalities, 
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\1 
a- 

■P "*0 
Au J- --y0 

> 
A n, \:p = xf 
A 

n, l:/: = yf. 

(3-18) 

where A ,   references the 1st row of the A matrix. In (3-11) , 

After adding the new variable f, three constraints must be added to the model. 

(3-19) 

«1 = ^ 

A = '^ 

?>c ) 

(3-20) 

In general, most solvers cannot handle the strictly greater than constraint. So, 

one can rewrite the last constraint in (3-20) as, 

t >e, where z is a small positive number (3-21) 

At this point all but the curvature constraints are represented as linear equalities or 

inequalities. The curvature constraint is much more difficult to formulate. The curvature 

function written in terms of the decision variables, a, and ß, looks as follows: 

K(s,a,ß,p) = 
Yfrt* * l(f-j)ß/-2 - ljß/~l * W-(W 
i=i ; I j=2 I I j=\ ) \ i=2 

( p ^ f P 

ms ;-i jja^ + tiß/A^tw-1 

1=1 1=1 1=1 

(3-22) 

where f(s,a,ß,p), and r(s,a,ß,p) are themselves defined as vector valued functions 

with the following form, 

/ 
r(s,a,ß,p) 

\ ( P \ 
-i 

( p 

X^-1 , 2, iß/ 
i=l i      ;=l (3-23) 

r(S,a,ß,p)=(  X(*2-*)«,.,'-2   ,  I(/-7)^/ 
\V=2 J\j=2 
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Squaring the curvature constraint, yields a cleaner representation, 

fp \ i P 

i=l J   l 7=2 I   I 7=1 J   V'=2 

/^ 

f P 

2^ 
1=1 / 

"\   fP }   f P ^ 
-6 

i-< rn 

i=l i=l i=l 

vO 
VseS(l)...S(n)        (3-24) 

The representation in (3-24) motivates n inequality constraints. 

• Proposition: At a fixed value of p,p, and s,s, K(s,a,ß,p) is a non-convex 

function. Moreover, the feasible region due to a curvature constraint is also not a 

convex set. 

• Proof: 

For K(s ,a,ß, p) to be convex the following inequality must hold, 

K(Ax + (\-A)y)<AK(x) + (l-A)K(y), 

Vx,ye{s,W,W,p}VAe[0,l] 

(3-25) 

The following counter-example proves the non-convexity.   Setting s =2, and p 

=1, and the following values for the coefficients, 

" 1 s " l "s 

0 «i 2 «1 

0 

2 
= 

«2 

ß^ 
>   y = 

-20 

0 
= 

«2 

A 
-10 A 0 A 
2 JP _ 2 _P   . 

(3-26) 

Now, choose A = 0.5, implying K(.5x + .5y)>0 and AK(x) + (l-A)K(y) = 0. 

• Result: Each constraint in the NLP is defined at a fixed value of p, and s. 

K(s ,cc,ß,p) is not convex for a fixed choice of p, and s. Therefore, the level sets of 

a non-convex function are also not convex sets. Therefore, the NLP is non-convex. 
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The NLP is not a convex program and thus cannot be assured of finding globally 

optimal solutions. Nevertheless, experience in solving the constrained optimization 

model without the curvature constraints suggests that curvature constraints rarely this 

problem due to the data used in this UAV application. Therefore, if the heading of the 

vehicle is the same as the heading of the jagged path at s=0, then, the curvature 

constraint will likely be less of a problem. The hybrid approach in Section 3.5 

establishes this condition. By establishing these conditions, the optimization model can 

be solved without the non-convex curvature constraints. If any of these constraints are 

binding then the non-linear programming code can use the solution from the 

optimization problem without the curvature constraints, as a starting point. 

Other approaches may attempt to discretize and estimate the curvature 

constraint. This discrete representation may then be easier to handle within the 

optimization framework. Curvature is defined as the ratio of the tangent vector's rate of 

change to the rate of change in arc length. If a discrete representation is chosen, then 

the change in arc length between two points can be approximated as the distance 

between these points. Furthermore, the change in the tangent vector can be 

approximated as the difference in the tangent vector from one point to another. Since, 

the location of a point is dependent on a, and ß, the discretized version is still complex. 

A further estimate of arc length exists in the data vector, S. Essentially, S is the arc 

length of the jagged path. If the mapping from the jagged path to the smooth trajectory 

through the polynomial functions maintains S as an estimate of the arc length of the 

vector valued function, then the curvature constraint can be approximated. The 

curvature constraint can be thought of as, 

<1VIG {!...«} (3-27) 
S: " 

where, si is the rate of change in the arc length at point i, and Tt is the rate of change in 

the tangent vector at point i. 
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The tangent vector is essentially the first derivative, so its derivative is essentially 

the second derivative. This implies that a second difference approximation can be used 

for T; 

Ti = U[f(sM)-2f(Si) + f(si_1)]2+[g(Si+0-2g(si) + g(si_1)]2j 
(3-28) 

S. = S,+1   5M 

Let a represent the row vector of polynomial coefficients in f, and ß represent the 

row vector of polynomial coefficients in g. In addition, define 

AS: 

"r.0   " Wl "r.0   ~ 

s1 

-2* si + 

CP ßr. OP (3-29) 

4 = 

(   \2 

r 

Some simple arithmetic yields the following approximation of the curvature 

constraint. 

{a(Ast))
2+{ß{Ast))

2<.dt 
(3-30) 

The proof for convexity of (3-30) is straightforward. Specifically, both terms 

inside the squares are linear functions. Squaring these linear functions maintains the 

convexity of the resulting terms. Next, adding a positive multiple of a convex function to 

a positive multiple of another convex function maintains the resulting function's 

convexity. Finally, the level set of any convex function is a convex set. 

The non-linear program is a purely convex program. However, the full non- 

convex NLP is not equivalent to this convex program. The convex program will find an 

optimal answer, but not the optimal answer for the non-convex problem. The reason for 

the disparity lies in the discrete approximation of the curvature constraints. In addition, 

the convex curvature constraints cannot be evaluated at the start and end point due to 
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the definitions in (3-28). However, if enough points are chosen this limitation will 

probably be of little importance. The greater the number of points the more accurate 

the estimate of curvature will be. However, every new point will add another constraint 

to the model. This convex NLP may be difficult to solve due to the large number of 

constraints. 

3.5    Hybrid Approach 

In this section, modifications to the smoothing approach are made. The resulting 

hybrid approach can be used as a pre-processing step for either the unconstrained or 

the constrained optimization approach. The premise of this approach is that the 

heading constraint forces the curvature constraint to be binding. Clearly, if the desired 

heading is different than the heading of the jagged path, the constrained optimization 

will attempt to force the smooth trajectory to turn in the direction of the jagged path. If 

the difference is large, intuition provides that stress is placed on the curvature of the 

path near the initial point. The hybrid approach eliminates the difference in the desired 

heading and actual heading before the optimization is performed. Thereby, the stress 

on the curvature constraints is reduced in this region. 

3.5.1        Introduction 

The advantages to the least-squares method, and the constrained optimization 

method without the curvature constraints are many. The most important advantage to 

the least-squares method is computational speed. For the constrained optimization, the 

advantage relies in the ability to more accurately model the problem. The 

unconstrained optimization, can accommodate the START-END constraint, with careful 

adjustments to the weighting vector. The constrained optimization approach is able to 

handle both the START-END and START-HEADING constraints fully. However, the 

least-squares technique is unable to handle the START-HEADING or the CURVATURE 

constraint. This section details a method of forcing the START-HEADING constraint for 

either the unconstrained or constrained optimization in a much different way than seen 

in Section 3.4. Similarly, to before, the CURVATURE constraint will hopefully be non- 

-63 



binding for the resulting solution using either the constrained (w/o curvature constraints) 

or unconstrained optimization. If not, it needs to be handled as outlined in Section 3.4.2 

3.5.2        Methodology 

The focus of this method is dealing with the START-HEADING constraint. The 

objective of any smoothing technique is to stay as close as possible to the path, p. In 

light of the objective, if the initial heading must equal some predefined heading, the 

vehicle would benefit by turning back towards p, as quick or with as little deviation as 

possible. If the smoothing of the path was only performed for a few of the initial points 

along the jagged path, then the turn back towards p could be accomplished with the 

minimum turn radius possible. Essentially, if the objective function is only defined for 

those points along the turn, the optimal solution would be to turn back to the path with 

as little deviation as possible. However, upon rejoining the path the heading of the path 

must be taken into account. Thereby, two turns must occur. The first turn takes the 

vehicle back towards the path; the second turn is in the opposite direction and ensures 

that the heading of the vehicle is correct upon the rejoin. The second turn also occurs 

with the minimum turn radius. Figure 3.5 is a graphical representation of the two turns. 

It should be noted that the solution, as illustrated, is the best the constrained model 

(over all-possible functions, f and g) could perform in this region of the path. 
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Figure 3.5 Illustration of 2-Turn Procedure 

The solution to the 2-turn problem boils down to finding the centers of the two 

circles. One major assumption is made to simplify the solution; the path, p, although 

previously defined as being jagged is now defined to be a straight line emanating from 

the start point. As long as the original path is straight within 3r (worst case) units from 

the start point, this assumption holds. However, the method could be adapted to the 

case where p is jagged within this bound. Figure 3.5 helps describe the following 

algorithm: 

Define two lines parallel to p that are r units in distance from p. 

Find the center of circle 1. (A result of the initial direction and start point.) Two 

answers will result. Choose the center whose distance to some point along p 

(not the start point) is minimum. 
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Find the points on the parallel lines 2r units from the center of circle 1. One of 

these 4 points is the center of circle 2. 

Choose the center of circle 2 such that the heading of the vehicle at the rejoin 

point is aligned with the heading along p. 

If the original path is not a straight line from the start point to the rejoin point, a 

modification to the 2-turn algorithm could alleviate the problem. Essentially, step 1 of 

the algorithm would need to create a set of line segments that are parallel to the jagged 

path. The remaining steps still apply. In the particular application chosen, the minimum 

turn radius is small enough that the 3r assumption is not violated. 

The following question remains - How does one smooth the path after the 2-turn 

solution? The first step is to locate the rejoin point and then replace the start point in P 

with this rejoin point. Assuming the original path is a straight line from the start point to 

the rejoin point, all that is needed is to replace the start point with the rejoin point. From 

this point, all the developments of both the constrained and unconstrained methods 

apply. For the unconstrained method, two careful adjustments must be made in order 

to ensure that the heading of the vehicle at the rejoin point is along p and the rejoin 

point is the starting point for the smooth trajectory. This adjustment is made by carefully 

adjusting the weighting vector. Instead of weighting just the first point (to ensure the 

start point is correct), the first k points need to be weighted. The choice of k is arbitrary 

(however, k must be less than the number of data points between the vertices of p.). In 

the context of this application, the first four data points were weighted in a decreasing 

fashion. For instance, letting w(1)=10,000 as previously described, w(2)=5000, w(3) = 

1000, and w(4)=100, ensured the initial heading from the rejoin point matched the 

heading of p at the rejoin point. 

Using the constrained model, the specification of the start point is now the rejoin 

point. The START-HEADING constraint is still needed, to create a smooth path. 

However, now the vehicle is heading in the direction of the jagged path.  As previously 
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mentioned, this condition places less burden on the curvature of the path near the start 

point. 

3.5.3        Possible Modifications to 2-Turn Procedure 

The 2-turn procedure gives a method for smoothing a path around a jagged 

section of the graph. It should be noted that similar methods could be used to smooth 

the path, eliminating the need for the entire optimization approach to the path- 

smoothing problem. Modifications to the 2-turn procedure could be made so those 

jagged portions of the entire path are smoothed. The methods as developed, yield a 

solution whose worst case error is twice the turning radius of the vehicle. Similar to the 

optimization approaches, these methods will begin to experience larger deviations from 

the path when the jaggedness of the path increases. The larger the heading differences 

from linear segment to linear segment, as well as the number of linear segments 

comprising the path is a measure of the jaggedness. Increasing either both or one of 

these parameters will begin to stress a 2-turn type procedure (and even the optimization 

type methods). 

In this thesis, extending the 2-turn procedure to the entire path is not studied. 

However, future research should compare the performance of a 2-turn type procedure 

to the performance of the optimization methods as developed in this chapter. 

3.6    Conclusions 

This chapter provided an overview of how to formulate the path-smoothing 

problem. Other methods may exist which solve this problem in a different manner. 

Specifically, one could eliminate the entire optimization of the path and rely on the 

vehicle's controller to maintain a specific ground track (even if that ground track is 

infeasible). The techniques developed in this chapter attempt to create a path, which is 

feasible for the vehicle. The vehicle's controller is still needed to maintain this path, but 

hopefully the real-time control algorithms better handle the smooth trajectory than an 

infeasible jagged trajectory. Another approach could modify the 2-turn procedure in 

order to eliminate any jaggedness of the path.   Even though other methods may exist, 
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the optimization approach has been created as a possibility for the path-smoothing 

problem. 

The vehicle simulation is written using MATLAB, and the hybrid approach using 

the constrained optimization as part of that simulation. MATLAB has a built-in 

optimization function that is capable of handling the constrained optimization (without 

the curvature constraints) as presented. The implementation ignores the curvature 

constraint, as it is rarely binding in practice. The fact that the constraints are not binding 

is a function of the data inherent in the jagged paths. If the paths are sufficiently jagged, 

then clearly the curvature constraint would become more of an issue. If these 

techniques are applied in other situations then the appropriate handling of these 

constraints is needed. The curvature constraint can be included in either its non-convex 

form, included in its estimated convex form, or eliminated. If the constraint is 

eliminated, then the vehicle's controller needs to be able to correctly compensate for 

any situations where the path violates the minimum turn radius of the vehicle. In the 

simulation discussed in this thesis (Chapters 4 and 5), if the constraint is binding then 

we need to assume that the controller is able to compensate. 

The convex NLP as formulated should provide an optimal answer after a solution 

is found. However, computational results were far from satisfying for this model. The 

results for both the constrained model without the curvature constraint, and the convex 

formulation with the curvature constraints are briefly presented in Chapter 4. The 

results suggested that the convex NLP with the curvature constraints while seemingly 

well behaved in formulation is not well behaved upon actual implementation. Therefore, 

the MATLAB routine designed for the constrained model without the curvature 

constraints was used. 
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Chapter 4 

Path Planner 

This chapter provides an efficient approach for a UAV, with the task of tracking a 

moving target. Elements from the previous two chapters are integrated and developed 

further in order to produce the path planner. In addition, the path planner is developed 

in the context of a specific application. The application chosen is an underwater 

autonomous vehicle whose environment of operation is Narragansett Bay, Rhode 

Island. However, the approach is not vehicle specific and could be generalized to any 

vehicle. 

The framework for the moving target path planner is not specific to a particular 

environment or vehicle. However, applying the framework to a specific application 

shows the power of the moving target path planner. In order to demonstrate the moving 

target path planner, the concepts, as presented in this chapter, are implemented in a 

simulation. The results from the simulation are included in Chapter 5. 

A broad sense of the algorithm can be gained by imagining the target dropping 

breadcrumbs as it travels through its environment. The path planner, as developed, 

instructs the seeker to then follow that set of breadcrumbs. However, it does not 

necessarily follow the same path taken by the target. The path taken by the target may 

be infeasible for the seeker. The path may be infeasible for the seeker due to the target 

having more knowledge of the environment. With greater knowledge, certain obstacles 

that are present for the seeker are not obstacles for the target. Furthermore, the target 

may be capable of performing maneuvers that the seeker is not. Thus, the seeker 

cannot strictly follow the path of the target. Therefore, the seeker will travel between 

breadcrumbs in a least cost fashion (i.e. as defined by cost metric). 
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4.1 Definitions 

1. Network - The network is a 2-D grid map. The neighborhood size is 16, and 

is defined the same as in Chapter 2. 

2. Cost - The cost metric chosen is distance. The cost along any arc is the 

distance from the center of the two grid cells connected by the arc. 

3. Current - The current (or wind for unmanned aerial vehicles) is defined as a 

fixed value for a specific grid cell, at any instant in time. 

4. Terminal State - When the seeker vehicle has no path information to follow, 

the terminal state exists. In the context of the path planner, the state will 

always occur when the seeker reaches the current goal. New path 

information may not be available for one of two reasons. 1)The seeker 

vehicle failed to acquire a target position update. 2) A new target position has 

been acquired, but the path planner is busy computing the new path. 

5. Errors - a) Position error estimate is defined as the error in estimating the 

current position. In many UAVs an inertial navigation system is used to 

maintain an estimate of the current position, b) Path smoothing error is 

defined as the deviation in the smooth path from the jagged shortest path, c) 

Navigation error is defined as the error associated with the vehicle failing to 

exactly follow a commanded track. The vehicle may be commanded to travel 

along a straight line track, but due to unforeseen circumstances the vehicle 

deviates from this desired track. 

4.2 Assumptions 

1. Map - The map is known a-priori, and is fixed for the life of a mission. 

2. Speeds - The magnitude of the seeker's velocity, \\vs |, is assumed constant 

as is magnitude of the target velocity, ||Vr |. 
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3. Current - The magnitude of the current is less than |vs||. Otherwise, the 

seeker vehicle may not be able to make forward progress for a desired 

ground track. 

4. Obstacles and the Map - The obstacles in the map are assumed buffered by 

an amount that will maintain the safety of the vehicle. The obstacles must be 

buffered in order to account for the following errors: errors in position 

estimate, errors in path smoothing, and navigation error. 

5. Path Existence - If a path is desired from node i to node j, then the path must 

exist. In the context of the path planner, a path will never be desired that 

cannot be found. 

6. Terminal State - A vehicle behavior exists such that either of the two 

following conditions holds. 1) The seeker vehicle is able to progressively slow 

down such that once the goal of the current path is reached a new path to a 

new goal is assured of existing. Or, 2) if the terminal state does exists, while 

the vehicle awaits a new plan, the vehicle is assumed to travels to nodes for 

which the backpointer of that node is defined. To motivate the second 

condition, suppose the terminal state occurs, and the vehicle travels to a node 

that does not have a defined backpointer.   Then, a path cannot be created 

from that node. 

7. Initial State - The initial velocity of the vehicle is assumed to be zero. In 

addition, the initial heading of the vehicle is assumed to lie in the direction of 

the first shortest path. 

4.3    Algorithm Description 

The following flow chart gives a high level description of the path planner. The 

details of how the path planner operates in the moving target scenario are a function of 

how the source and target are chosen, and how the path is created (process #3). 
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Figure 4.1 Description of Path Planner 

In general, the path planner as illustrated in Figure 4.1 is capable of solving the 

shortest path problem for the moving target scenario. As shown, the path planner is a 

sub-function of the UAV. If the mission planner is in moving target search mode, the 

four processes are executed repeatedly through time. 

An example of how the above flowchart works in practice is helpful in 

understanding the way a moving target planner works. First, the mission planner 

decides that a moving target needs to be tracked. At this point, the mission planner 

invokes the moving target functionality of the path planner. Process #1 stores the most 

recent target location as the target, and the current position of the seeker (itself) as the 

source. Process #2 then computes the shortest path from the target to source. In 

addition, process #2 stores the backpointer list for later iterations.   In general, Process 
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#2 takes a non-zero amount of time, so process #3 must take the new position of the 

seeker and compute the shortest path from this new location. However, at the first 

iteration of the algorithm the seeker is assumed to have zero velocity. Therefore, the 

current position of the seeker is the source in the shortest path problem. Process #3 

uses information contained in the backpointer list to aid in finding the actual shortest 

path. Now Process #4 takes the path and smoothes it. Process #4 does nothing to the 

backpointer list and is passed back to the mission planner. The smooth ground track is 

also given to the mission planner, which then passes it to the navigation and control 

algorithms. These algorithms execute the smooth ground track, until the mission 

planner decides a new target location needs to be integrated. 

The mission planner invokes the path planner again. At this point in Process #1, 

the source of the new path is not the current vehicle position. Rather, the source is 

chosen as the old target location, and the target is chosen as the new target location. 

Process #2, in computing the shortest path, uses the old backpointer list. Changes are 

made to this list if the shortest path computations warrant the change. The remaining 

processes are carried out in the same manner as in the first iteration. 

The following sections detail the processes as illustrated in Figure 4.1. The first 

three processes are grouped together in section 4.4 on shortest paths. The final 

process is described in section 4.5 on trajectory smoothing. 

4.4    Shortest Path 

At the network level, the moving target search is solved as a series of static 

shortest paths. In order to solve the moving target problem, one could implement 

successive shortest path algorithms, where the new optimal path is computed from the 

current position of the vehicle to the target's location. As previously illustrated, the 

number of nodes searched in a grid network increases as the distance from source to 

goal increases. If the target and seeker are far apart, then computing successive 

shortest paths from seeker to target may be inefficient. In addition, implementing the 

shortest path, planned in this manner, will not be feasible due to the computation time of 

the network shortest path algorithm.    Specifically, after the shortest path algorithm 
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completes, a certain amount of time has expired. Assuming the vehicle is travelling at 

some non-zero velocity during the path computation, the current position of the vehicle 

is no longer the source as provided to the shortest path algorithm. Therefore, 

constructing a shortest path from the actual position of the vehicle to the target (after the 

path computation) may not be feasible. 

Instead of computing paths from the seeker position to the target position, the 

planner takes a different approach. As outlined in the description of the flowchart, 

Figure 4.1, only the first path is computed from seeker to target. All other paths are 

found by searching from the previous target location to the current target location. Then 

the path is found from the seeker position by following the set of backpointers to the 

most current target position. If the backpointer list provides no improvements over the 

entire length of the mission, then the resulting trajectory will be the shortest path from 

the initial seeker position, and the connection of all shortest paths planned from a 

previous target location to the next target location. 

Figure 4.2 Resulting Trajectory with No Information in Backpointer List 
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Figure 4.3 Resulting Trajectory with Improvements Due to Backpointer List 

In Figure 4.2 and Figure 4.3 the initial seeker position is labeled S0 and all other 

points are the target locations. Figure 4.3 shows the benefit of updating the path from 

the seeker to the current target location using the backpointer information. 

4.4.1        Description 

The following algorithm addresses both the inefficiency of computing full plans 

form source to goal, and the problem of how to construct the path in light of a constantly 

moving seeker. 
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algorithm moving target shortest path; 

begin 
1. initialize At; 
2. backpointer(j)=0 V je N (N = arcs in G) 

3. t:=0; 
4. seeker_speed=0; 

5. for i = 1 to °° 
6. path(i)=null; 
7. target(i) = target position at time t; (Sensor update) 
8. if t=0 then source = initial seeker position; else source(i) = target(i-l); 
9. time_to_compute=curent_time; 

10. find shortest path(i) from target(i) to source(i) 

11. while computing shortest path 
12. if t>0 follow path(i-l) until shortest path completes; else wait for shortest path algorithm; 

13. end 
14. update backpointer; 

15. end; 
16. time_to_compute=current_time-time_to_compute; 

17. get current_position; (Navigation update) 
18. compute path(i) by following backpointers from current_position to target(i); 

19. seeker_speed=seeker_operational_speed; 

20. while t < t + At 
21. follow path(i); 
22. t = current_time; 
23. end; 
end  __  

Figure 4.4 Moving Target Algorithm 

The above algorithm may seem complicated, but it is a simple method of 

computing a continuous path from the moving seeker to the moving target. In order to 

illustrate the algorithm, a few iterations of the algorithm are discussed. In the following 

description the number on the left refers to the line number in the moving target 

algorithm. 

-    INITIALIZATION 

1. In order to initialize the algorithm, the sensor update time, At, is set 

2. The backpointer for every node in the graph is initially set to zero, 

3. The current time is set to zero. 

4. Assuming the seeker is stationary upon beginning the algorithm the seeker 

speed is set to zero. 
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■    LOOP 

6. The current path is set to null. 

7. The current location of the target is acquired from the mission planner via a 

sensor update. 

8. The source for the shortest path algorithm is chosen. At the first iteration it is 

the initial position of the seeker. At later iterations the source is the goal of 

the previous iteration (i.e. the target's location at the previous iteration) 

10. Using the information from step 8, the shortest path algorithm begins to look 

for the shortest path from goal to source. 

12. While performing step 10, the vehicle continues on the previous path.  If this 

is the first iteration of the algorithm, the seeker waits. 

14. Once step 10 completes, an updated backpointer list should be available. 

17. The path planner assesses navigation for the best estimate of the seeker's 

current position. 

18. A path is found from the current position of the seeker, to the target, using 

the information contained in the backpointer list. 

19. The speed of the seeker is set to the speed as determined by the mission 

planner. 

20 -23.  The seeker follows the new path until a target update occurs, in which 

case the path planner algorithm loops beginning with step 6. 

The entire path (over all iterations of the path planning algorithm) followed by the 

seeker, in the worst case, will be composed of the shortest path from the seeker's initial 

location to the target's initial location, and all the shortest paths computed from a target 

location to the following target location. The path will likely be better (i.e. lower cost) 

than the worst case path because information in the backpointer list may provide 

improvements over the worst case path. Examples of this improvement are seen 

throughout the next chapter, which discusses the performance of the path planner 
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In the algorithm, At must be chosen carefully. Specifically, At must be greater 

than time it takes to compute the path. The upper bound could be as large as desired. 

However, the larger the value of At the worse the algorithm performs. In terms of a 

UAV, At refers to how often new target information is incorporated into the moving target 

scenario. The sensors onboard a UAV may acquire target information at a rate faster 

than the computation time of the shortest path algorithm. For instance, the sensors may 

acquire target location every 3 seconds. However, the shortest path algorithm takes 5 

seconds to complete. This condition is not a problem in implementation because the 

target location does not need to be incorporated at the rate it is updated. Even though 

the update to the target location occurs every 3 seconds, one can choose At >5 

seconds, and use the best information about the target's location available. Clearly, the 

seeker always will travel to the target's last known position. In addition, due to the 

nature of the computed paths, the behavior of the seeker's trajectory is likely to be close 

to the target's trajectory. If the target is travelling according to a similar cost metric as is 

the seeker, these trajectories will tend to be more similar. Therefore, the seeker tends 

to follow the target's trajectory. Because, the seeker is always computing paths to the 

target's last known position, and the manner in which the paths are computed, implies 

that the seeker will exhibit the desired trailing behavior. There is no reason that the 

target updates have to occur at fixed intervals. The mission planner or some higher 

level process on-board the UAV could specify when the target update should occur. 

The analysis in Section 4.6 is based on fixed time intervals between target location 

updates. In Section 5.4.3 a variant to the fixed time interval method is discussed. 

4.4.2        Illustration of Shortest Path 

This section provides an illustration of the environment as well as typical shortest 

paths in that environment. The following figure represents the environment of 

operation. 
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Figure 4.5 Map of Narragansett Bay 

In Figure 4.5, the grid size is 50 meters by 50 meters. The map is 691 x 691 grid 

cells, resulting in 477,481 nodes in the graph. Furthermore, the number of free grid 

cells is 157,364, or in other terms approximately 33% of the map is traversable. This 

results in 2,517,824 arcs in the graph. The dark area represents obstacles, and the 

white region represents free cells. Furthermore, some of the dark area may actually 

represent water, but at depths too shallow for the vehicle. This 2-D representation was 

created from data that contained the depth of the bay floor at each position on the map 

[2]. An acceptable depth for travel was chosen, and any depth not meeting this criterion 

was labeled as an obstacle. 

The next figure illustrates how a typical shortest path is displayed on the map. 
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Figure 4.6 Illustration of Typical Shortest Path 

4.4.3        Illustration of Backpointer Information 

Once the shortest path algorithm terminates, more information than just the 

shortest path is available. If a node is labeled as permanent during the search a 

backpointer for that node exists. After the shortest path algorithm ends, this information 

may become very helpful. For example, in following a shortest path the UAV may 

depart that path for unforeseen circumstances but still remain in a grid/node that has 

been labeled as permanent. If the backpointer information is stored after the algorithm 

terminates, the UAV is able to follow a set of backpointers to the target. In the case of 

the algorithm as shown in Figure 4.4, the backpointer information provides information 

that will improve the path from the seeker to the moving target. Without this information, 

the seeker would travel to the target's first known location, and then follow a series of 

successive shortest paths from that location, to the following locations of the target. As 

the algorithm proceeds it maintains the backpointer list. For example, after the first 

plan, those nodes that are labeled permanent have a backpointer assigned to them. As 

a result of initialization, all other nodes have backpointers set to 0.   During the second 
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plan, the same backpointer list is used and is updated as necessary. Those nodes not 

permanently labeled, cause no change to the backpointer list. In reference to the grid 

maps and neighborhood structures as previously defined. The backpointer can be 

stored as a number from 1 to the neighborhood size. For example, when 

\neighbor(x)\ = 16, the backpointer at any node is stored as a number from 1 to 16. The 

following figure is an illustration of the backpointer information after a single shortest 

path run. The different shades of gray represent the different values (1 to 16) at each 

grid cell. In addition, the darkest cells are assigned a value of 0. If the cell has a value 

of 0, then it is either an obstacle or it is not in the set of permanently labeled nodes (i.e. 

no backpointer associated with it). 

Figure 4.7 Illustration of Backpointers 

The next figure is an illustration of the backpointer information after two shortest 

path calculations. 
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Figure 4.8 Illustration of Backpointer after two Shortest Path Computations 

Both Figure 4.7, and Figure 4.8 have a legend, which explains which shade 

corresponds to the value of the backpointer at a grid location. The difference in the two 

figures corresponds to an area of the grid labeled with new backpointer information. 

This area is centered around the target (or goal) of the second shortest path 

computation. 

It is easy to recognize that if the backpointers are maintained as described in 

Section 4.4.1, a path will exist from the seeker's current location to the most recently 

incorporated target location. 

4.5    Trajectory Smoothing 

This section provides a brief look at smoothed trajectories, and how two smooth 

trajectories are pieced together. The method used for smoothing is essentially the 

hybrid approach given in the chapter on path smoothing. The vehicle is assumed to be 

heading in the direction of the shortest path for the initial trajectory. The conditions for 

subsequent trajectories  are  established   using  the  2-turn   procedure.     Extremely 
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important to any path smoothing procedures is the maximum error associated with the 

smoothing technique. As stated before this error is part of the error used to buffer the 

obstacles. The derivation of the maximum error associated with the 2-turn procedure is 

developed. The maximum error associated with the optimization procedure is 

computed from output of the optimization. 

4.5.1        2-Turn Procedure, Description and Error Development 
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Figure 4.9 Illustration of 2-Turn Procedure 

An important measure of performance for the 2-turn procedure is the maximum 

deviation from the desired path. The angle between the desired heading and the initial 

heading is the driving variable for the maximum error. The following picture shows 

diagrams the details involved in the 2-turn procedure. 
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Figure 4.10 2-Turn Diagram 

To review the procedure in terms of Figure 4.10 the problem is characterized by 

the following parameters. 

1. Initial heading vector, V, 

2. Desired heading vector, Vd 

3. Initial Point, P0 

4. Desired Path, composed of the ray defined by P0 and Vd. 

5. Turn Radius, r 

6. Circle 1, and Circle 2 

7. 2 Lines r units from Vd 

The following diagram is a magnification of Figure 4.10, and will be used to motivate the 

function that describes the maximum deviation from the desired path for the 2-turn 

procedure. 
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Figure 4.11 Magnification of 2-Turn Procedure 

Proposition: The maximum error, y, due to the 2-turn procedure is a function of the 

angle between V,, and Vd, and the turn radius r.. This function is 

y(r,0) = r(l-cos(0)) (4-1) 

Proof: The following proof draws heavily from Figure 4.11. 

1. We can always transform the coordinate system so that the desired heading 

vector, Vd lies in the positive y-direction, the initial point is the origin, and the 

angle from V-„ to Vd is preserved in magnitude and direction. 

2. The maximum deviation occurs on circle 1. When the turn is initiated along 

the second circle, the heading is convergent of the desired heading. All the 

subsequent headings along the turn on circle 2 are convergent on the desired 

path. Because of the convergent headings, the distance will strictly decrease 

throughout the entire turn on circle 2. Therefore, the maximum error on circle 
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2 is at the intersection point. Since the distance from the desired path is 

decreasing across the intersection point, the maximum distance occurs on 

circle 1. 

3. The maximum deviation is y, as shown in the above figure. 

4. By definition, y + x = r. 

5. W=90-6 

6. By law of sines, the following equality must hold, 

sin(90-fl) = sin(90) 

x r 

7. By trigonometric identities and manipulation of (4-2), 

x=rcos(0) (4-3) 

8. With the result in (4-3), and the definition, y + x = r, 

y = r(l-cos(0)) (4-4) 

■    Result:   We have shown that y(r,0) = r(l-cos(0)) as proposed. And the largest 

value yean attain is 2r. 

A numerical approach was performed to validate (4-1). The results are shown in 

the following plot. 
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Figure 4.12 Max Error Due to 2-Turn Procedure 

This plot is essentially the plot of (4-1) with r= 1, verifying the previous argument. 

Why is this error important? This error is one of two errors that can be used to 

access whether a 2-D grid map is sufficient for path planning. If this error, is larger than 

the error due to smoothing a path then the obstacles only need to be buffered by 2r. 

However, the 2rerror may never or rarely happen in a vehicle's mission. Therefore, the 

obstacles may only need to be buffered by some amount less than 2r. Simulation 

results could provide a distribution, which characterizes this error. With this distribution, 

one could choose some deviation that encompasses a large percentage of the 

distribution's area. After finding this number, the obstacles could then be buffered by 

this amount. In the unlikely case that a 2r error does arise, the vehicle could rely on 

higher level processes to maintain the vehicle's safety. 

Once the 2-turn procedure is complete, the conditions are satisfied for performing 

the rest of the hybrid smoothing technique. The following picture shows the initial 

smoothed trajectory. The initial trajectory does not require the 2-turn approach because 

of the assumption concerning the initial heading vector. If this assumption is relaxed, 

then the 2-turn approach could be used for the initial trajectory. 
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Figure 4.13 Illustration of Smooth Path 

in Figure 4.13, the smoothed path and the shortest path are almost exactly the 

same path. The shortest path is composed of the two arrows, and the smooth path 

terminates at some point before the second arrow is reached. The next figure, Figure 

4.14, is a magnification of the seeker's trajectory in order to illustrate the details of a 

typical trajectory. 

   Obstacle 

Smoothed Seeker 
Trajectory 

Shortest Path 

2-Turn Procedure 

82 G4 86 SO 92 94 100 102 

Figure 4.14 Illustration of a Continuous Smooth Trajectory 
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4.5.2       Constrained Optimization (Smoothing), Description and Error 

Development 

The model chosen to smooth the function is the constrained optimization model 

(per Chapter 3) without the curvature constraints. The limitations of not including the 

curvature constraints are noted. However, the curvature of any trajectory is rarely 

violated. In the rare instance that the curvature of any smooth trajectory is violated, it is 

assumed that the vehicle controller is able to follow a ground track that is close to the 

desired ground track. As before, the model is formulated as, (see Section 3.4.2) 

NLP: min a,fl c* 

subject to: 

A,,   a- 
\,\.p 

-XQ 

A.   ß~- -~y0 

A  ,   a- n,\:p = Xf 
A   .    ß- 

-yf_ 

(4-5) 

(4-6) 

«1 = rt>," 

A = tuy> 

t>Q ) 

Once a solution is found, the max error is defined. 

max error := max, ■x(i) 

Y    ( 
+ Hßjs®'-1 

J=I 

-yd) 

(4-7) 

(4-8) 

Equation (4-8) relies on the estimate of error at a particular value of s, as the 

error due to estimating x, and the error due to estimating y. 

The routine that performs the optimization code used within MATLAB is Isqlin.m. 

This routine is built into the optimization toolbox. It is especially built to minimize the 

norm of a vector subject to linear equalities and inequalities. The objective function 

does not minimize the maximum error, rather it minimizes the sum of the squared 
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errors. Even though the measure of performance, maximum error, and the objective 

function do not match, there exist significant computational advantages in using the 

built-in code. The formulation of minimizing the maximum error was coded within AMPL 

(advanced mathematical programming language). Subsequently, we used LOQO (a 

non-linear programming solver) to solve the problem. With the same choice of p (the 

degree of the two polynomials), LOQO was not guaranteed of even finding a feasible 

solution. However the MATLAB routines always found the optimal solution (in all the 

test cases). The reason for this discrepancy was likely the differences in algorithms 

used and the high condition number of the C matrix. In addition, the computation time 

for the MATLAB routine was phenomenal. Most cases (approximately 90%), took less 

than 0.50 seconds to find an optimal solution. For the few cases where LOQO did find 

an optimal solution, the time for computation was at least one order of magnitude 

greater than the computation time for MATLAB1 and usually greater than two orders of 

magnitude in difference. The relative performance (in terms of computation time) is 

hardly important when considering that LOQO failed to even find solutions at times. 

It should be noted that choosing the degree of the polynomial was based on 

experience in running the model. The degree of the polynomial was bounded between 

5 and 20. The more jagged the trajectory the greater the value of p. Specifically, p was 

set to two times the number of vertices in the jagged path plus three. If using this 

method, p is larger than 20, then p was set to 20. The minimum number of vertices in 

the jagged path equals two (i.e. in the case of a straight path the end points of the path 

are considered the two vertices). Recall, that vertices in the path can be the end points 

of the jagged path or a point in the jagged path that connects two line segments (with 

different slopes). Furthermore, the number of points, n, was set equal ten times the 

number of change points in the jagged path. The total number of points was limited to 

250 (clearly, if there are more than 250 change points then more points would be 

needed; however, this scenario never occurred in practice). In addition, the minimum 

number of points was limited to no less than 15.   This lower limit ensured that n was 

1 MATLAB computations performed on a SGI ORIGIN 2000 workstation; LOQO 
computations performed on MIT's Athena Dial-In Computers (similar performance as 
SGI machine) 

-90- 



sufficiently larger than p. As typical with most polynomial fitting schemes, one should 

try and ensure that n»p. Otherwise, the polynomial begins to fit only at the points 

[X(i),Y(i)] (the data), and varies widely between the points. 

The maximum error due to the optimization in the simulation, was rarely greater 

than 1 unit. In terms of the grid map, this value implies that the error due to the 

smoothing was usually bounded by 1 grid cell. The longer the trajectory, the greater the 

error. Instead of listing various runs and the data used for those runs, a sampling of the 

maximum error is given in the Chapter 5. 

4.6    Algorithm Performance and Worst-Case Analysis 

This section examines the properties under which a seeker will track the moving 

target. If the algorithm fails to track the target it is not an acceptable approach. If a 

measure of algorithmic performance is desired, then simulating the algorithm is one 

approach. However, some notion of theoretical correctness and complexity of the 

algorithm should not be overlooked. 

4.6.1        Speed, and Distance Comparison 

Assumptions: 

1. Both Target and Seeker are Travelling in Free Space 

2. Both Target and Seeker are Travelling at Constant Velocities 

3. The neighborhood structure is defined as a set of different angles. 

Clearly the seeker vehicle cannot track the moving target if the target travels with 

greater speed. However, one can make this bound tighter by examining the 

neighborhood structure for the seeker vehicle. First, the target travels without the 

restriction of performing maneuvers on a grid based map. Therefore, the target vehicle 

travels according to the Euclidean distance metric. Clearly, if the target vehicle is a 

manned submarine, the submariners on-board do not constrain their maneuvers to the 

16 different moves as capable by the seeker vehicle. However, given any two points in 

space the distance between these points, in relation to the seeker vehicle, is not the 
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Euclidean distance. The question remains - What is the equivalent metric for the 

seeker? The answer is not so simple due to the grid map, and the structure of the move 

types. For instance, if the seeker is at the origin, (0,0) and desires to move to the point 

(0,1), it moves to the neighboring cell directly to the right. This move is admissible and 

results in a cost or distance of 1 unit. The Euclidean distance is alsol. However, if the 

seeker wishes to move from (0,0) to (3,4), it must first move to the point (1,1), then to 

(2,2), and finally to (3,4). The first two moves result in 2.828 units of distance, and the 

last to a distance of 2.236. The total distance for the move is 5.064 units. If the target 

is to move from the origin to (3,4), the total distance traversed is 5 units. Therefore, 

some pairings of points yield the same distance, while others yield different distances. 

Furthermore, the concept of grid size can further effect the comparison. 

■ Definition: 

1. The set of angles in the 1st quadrant that define the possible moves is 

Zmove :={0%arctan(.5),arctan(l),arctan(2),90°}. The moves (in the 2nd quadrant) 

can be found by adding 90°, to these angles. The moves in other quadrants 

are found similarly. These angles are the equivalent angles to the moves 

defined by the neighborhood structure. 

■ Proposition:  For any two points in the plane, the seeker may be forced to travel at 

most 1.0275 units for every unit traveled by the target. 

■ Proof:  As before, this proof relies on some insight gained by the geometry of the 

problem. 

1. For any two points in space the target travels according to the Euclidean 

metric. 

2. Construct a circle of radius 1 centered at the origin. If the target must travel 

from the center of the circle to any point on the circle, the target travels r units 

of distance 
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3. If the seeker is constrained to one move, only 16 different points on the circle 

are attainable. By symmetry, only the first quadrant need be examined. 

According to Zmow, only five points are attainable on the circle in the first 

quadrant. 

4. Geometry yields that two points in the first quadrant result in the maximum 

deviation from the 5 possible points. These points are shown in Figure 4.15. 

i L 

/ 
2 Points of 

maximum 

\   / 

deviation 

/ 

i>^\  ► 

Figure 4.15 Illustration of Angle Neighborhood 

5. By simple geometry, the points of maximum deviation occur at 13.28°, and 

76.72°. 

6. The seeker can attain either point of maximum deviation by performing two 

moves. This scenario is illustrated in the following picture. 
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Figure 4.16 Magnification of Angle Neighborhood 

7. Again by symmetry, the results for the point at 13.28°, point 1, are applicable 

to point 2. 

8. In order to attain point 1, the seeker moves along segment A, and then along 

segment B. 

9. Geometric insight suggests that the seeker should leave the x-axis as soon 

as possible in order to reach point 1, if the total distance to point 1 is to be 

minimized. This corresponds to leaving the x-axis with a heading of 

approximately 26.565°, or exactly tan'1 (1/2). 

10. ZCA = .5*ZBD -26.565°. Moreover, ZAB - 180 - 26.565=153.435°, and 

ZBC+ZCA+ZAB=\m. Observe that all the angles in AABC are defined, and 

AABC is an isosceles triangle. Using the law of sines, the length of A -.5137. 

11. The resulting distance traveled by the seeker is 1.0275 units. For the same 

two points the target vehicle traveled 1 unit. 
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12. If any other point on the circles is chosen to be attained by the seeker, the 

resulting combination of moves will have a distance less than the distance of 

1.0275 units. This fact is due to the other points being strictly closer to one of 

the desired headings. 

■ Result 1: In the worst case, the seeker travels 1.0275 units of travel for every unit 

traveled by the target. 

■ Result 2: By previous arguments the seeker cannot travel slower than the target. 

Incorporating the distance metric result with this condition yields the following worst 

case condition, 

|\/||<.973|VJ| (4-9) 

4.6.2       Cycling and Worst-Case Path 

At this point, a speed comparison is in place, the issue of decreasing the 

distance from seeker to target is discussed. In actuality, the planner as developed is 

concerned only with planning paths to the last known position of the vehicle. Assuming 

this trajectory takes some time to complete and the target vehicle continues travelling 

while the seeker traverses this path, the seeker vehicle will remain a certain distance 

from the target vehicle. Clearly, the planner is not concerned with intersecting the 

target. Rather, the planner is concerned with planning paths to a target location that is 

not the actual location of the target when the vehicle arrives at the goal of the path. 

Again some assumptions are needed to motivate the following arguments. First, 

in order to show how the distance decreases, it is assumed that the seeker is tracking 

the target in an environment devoid of obstacles. Second, the worst case situation 

results when the target is travelling a straight line and the seeker is following directly 

behind the target. 

4.6.2.1 Cycling Argument 

The no obstacle assumption is needed because of the following cycling 

argument. This assumption must be made because the algorithm may fail to decrease 
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the distance to the goal in certain degenerate situations. The best method of explaining 

this situation is through the use of the following figure. 

Target Location 
2 

Target Location 
1 

Seeker Location 
2 

Seeker Location 
1 

Figure 4.17- Illustration of Cycling Behavior 

Imagine that once the seeker attains seeker location 1, a path to target location 1 

is available. At this point the seeker travels along that path, receives an updated target 

location, target location 2. At seeker location 2, a path is available to target location 2. 

This path causes the seeker to backtrack to seeker location 1. As the target cycles 

between target location 1 and 2, the seeker vehicle cycles between seeker location 1 

and 2. This cycling behavior may prohibit the seeker from decreasing its distance to the 

target. However, for the application chosen such a situation is highly unlikely to 

develop. It is hard to imagine the target cycling between two locations as it tries to 

egress its port and travel up the coastline. Furthermore, if such a situation were to 

arise, the mission planner on-board the UAV could stop the cycling behavior by 
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enforcing a plan to continue until one of the goals is reached.   This behavior is not 

modeled as it is part of the mission planner's role and not the path planner's role. 

4.6.2.2 Worst Case Path 

The following figure describes the progression of the target to the goal. 

Path from' 
S0toT0 

Path from 
SjtoTj 

Segment S,- SAl takes 
Ac units of time 

New target 
location acquired 

Figure 4.18 Illustration of Path Updates 

In Figure 4.18, S0 is the seeker's initial position, SAt is the position of the seeker 

when the target location T-, is given to the shortest path algorithm. The seeker remains 

on the initial path for Ac time (Ac = time to compute path), and begins travelling on the 

new path at S?. Likewise, at Su^ the seeker obtains the new target location, T2. If no 

new information is obtained, the vehicle's trajectory to T1 is shown in bold. At the point 

SUM, the vehicle has traveled through the following nodes, So, SAt & Sj. The path from 

SAI to Si takes Ac time to complete, where Ac is the computation time to compute the 

shortest path from T0 to T-,, and create the path from S1 to Tj. 
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Figure 4.18 describes a typical series of target locations and seeker locations as 

the algorithm progresses. In this figure, as the seeker travels towards the target it is 

able to make more progress towards the target than if the target were to moving directly 

away from the seeker. In other words, the target will make the most progress away 

from the seeker if it is travelling directly away from the seeker. In this type of travel, all 

of the target's velocity contributes to moving away from the seeker. Therefore, this 

situation, where the target is travelling in a straight path directly away from the seeker, 

is considered the worst case path. The worst case path is shown below in Figure 4.19. 

/ 

T, - refers to position of target at 
sensor update, i 

Target's Trajectory 

Direction of 
Seeker's Travel 

Initial Position 
of Seeker, S„ 

Figure 4.19 Illustration of Worst Case Path under the No Obstacle Assumption 

In this worst case path situation, the seeker's path will also be a straight line and 

eventually follow directly along the target's trajectory. 

4.6.3       Worst Case Performance 

This section gives a detailed analysis of how the seeker vehicle will track the 

moving target under a worst case scenario. Since this analysis examines the worst 

case behavior, the bound shown to compare the two velocities should also be used. 
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Throughout this section this bound is not included, but is implicit whenever the velocities 

are used.   Specifically, wherever \\vT\\ is used, it can be thought of as1.0275|Vr||. .   In 

order to motivate this analysis a few conditions are needed.   Some of these are listed 

previously and are reiterated in the following list. 

1) The network is a 2-D grid map. 

2) The magnitude of the seeker's velocity, ||vs|, is assumed constant as is 

magnitude of the target velocity, |vr|. In addition, ||v^ || >|vr
r|. 

3) The target locations are passed to the path planner at a fixe rate, At. 

4) The computation time is bounded by Ac. Furthermore, Ac is smaller than At. 

5) The seeker is tracking a target travelling along the worst case path. 

6) There exist no obstacles in the environment of operation. 

7) If the seeker reaches the goal of the current path and no new path information 

is available (i.e. seeker vehicle is in the terminal state), the seeker vehicle 

waits at this goal until new trajectory information is available. Once the new 

trajectory is available the seeker begins travel instantaneously at|vs|. 

8) The smoothing of the path results in the actual straight-line path that the 

seeker must follow in the worst case path scenario. 

9) The distance from the target's initial location to the seeker's initial location is 

defined to be larger than the amount of distance the seeker can travel in a 

Af-Mctime period. Defining the initial distance in this manner provides insight 

into how the algorithm performs when the initial distance is large. 

After all these conditions are established a sense of how the algorithm performs 

can be developed. The majority of this analysis will focus on the improvements made to 

the initial distance separating the two vehicles at the start of the mission. 
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■ Proposition: If the target and seeker are in the worst case path situation and 

condition #9 (from previous list) is satisfied, then the decrease in the distance from 

the seeker to target during one iteration is Adimprow = (|y,|-|VJ.|)(A/ +Ac). 

■ Proof: 

1. The initial distance is defined, 

d0=\\T0-S0\\ (4-10) 

2. After on step of the algorithm the distance is 

d1=d0- \VS | (At + Ac) + \VT || (At + Ac) (4-11) 

Both the seeker and target can travel for At + Ac due to the statement in the 

proposition. 

3. The improvement in the distance is 

Mmprove=(lVs\\-lVT\)(At + Ac) (4-12) 

■ Result: With the conditions set up in the proposition, the seeker gains on the target 

at each iteration by, Adimprove = (|v,|-|Vr|)(Af+ Ac). 

Now, if the distance continues to decrease at some point the distance is small 

enough that the seeker can no longer travel for the entire At+Ac time. However, the 

target still travels for this length of time. If the amount of distance traversed by the 

seeker is too small then the target vehicle may begin to pull away from the seeker. Let 

the amount of time that the seeker is able to travel be defined as Ax. Now, the 

improvement is given as, 

Mimpr0Ve =lVs\\(Ax)-lVT\\(At + Ac) (4-13) 

If the seeker is to decrease the distance to the target, then the improvement must 

be positive. In other words, the following condition must hold, 
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V-Il    (At + Ac) s\\>\ ) 

U Ax 
(4-14) 

Since, all the parameters in (4-14), except Ax are fixed for an entire mission, 

insight can be gained by looking at how small Ax can become. The smallest Ax value 

will result from the shortest possible path that the seeker may encounter. This situation 

results when the seeker reaches the goal of the current path. Upon reaching the goal of 

the current path, the seeker must wait for the next target update (if not already 

provided), and wait for the computation to complete. Now the vehicle, is ready to travel 

to the next target location. Since the target locations are equally spaced in time and 

space (i.e. due to the target's constant speed), the distance for the next path is known. 

This distance will correspond to the smallest value for Ax. Namely, 

VJAt 

^"M 
(4-15) 

■ Proposition: If the seeker travels along the minimum distance path, the distance 

from seeker to target will increase. 

■ Proof: The following proof is simple. 

1. The minimum distance path occurs when the seeker travels from a target location to 

the next target location. Again, 

Ax 
VT\\At 

(4-16) 

2.  Substituting into (4-14), 

3.  Rearranging (4-17), 

Wr 

(At + Ac) 

VT At 
(4-17) 

IKI 

At > At + Ac (4-18) 
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4. The condition for improvement is violated,    Thereby, using (4-13) the growth in 

distance is given by 

^„„=WI^-W(A< + Ac), 

A4„,™Hl1/r||Ac (4-19) 

■    Result: If the seeker travels along the minimum distance path the distance 

grows according to (4-19). 

What does this result impl/? After the seeker closes the initial distance and 

reaches the goal of a current path, the seeker is not guaranteed of improving the 

distance to the seeker. In addition, once the distance is closed such that the seeker 

reaches the goal of the current path the seeker will reach the goal of all subsequent 

paths as inferred by (4-16). 

This result demonstrates that in the worst case scenario as developed the 

distance from seeker to target grows once the seeker closes the initial distance as is 

able to reach the goal of the current path. This situation may only arise after many 

iterations of the path-planning algorithm. However, once the goal of a current path is 

reached the distance begins to increase at each iteration. This result seems 

counterintuitive, however it is possible. (4-19) implies that the amount of gain the seeker 

is able to make when travelling from goal location to goal location is unable to 

counteract the gains made by the target. 

The reason for the poor performance of this algorithm is the fixed rate of the 

target location updates. The fixed At forces the seeker to use At +Ac time units at each 

iteration of the algorithm, of which some may be spent waiting for new path information. 

After the seeker closes the initial distance and reaches the goal of the current path, the 

seeker is ensured of reaching the goal locations of all subsequent paths. However, now 

the seeker ends up waiting at the goal nodes too long, such that it cannot gain on the 

target. 

All hope is not lost in developing an approach that can maintain the distance 

improvement at each iteration.   The framework as presented earlier in this chapter is 
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adaptable to variable target location updates. Seeing as how this condition was the 

driving factor for the poor worst case performance, incorporating a variable At approach 

may alleviate the problem. In addition, the terminal state condition as dealt with in this 

section enforced the seeker to wait at the current node until new information became 

available. A variable At approach may reduce the likelihood of such a situation by 

requesting a target location, at least Ac time units away from the goal of the current 

path. In this manner, once the seeker reaches the current goal, a path already exists 

and no waiting is needed. The variable At approach is developed in the Chapter 5. The 

approach is not specified here because the error growth as suggested by this analysis 

was only seen after running the simulation. 

If the vehicle is forced to use a fixed At, a different approach is provided. This 

approach relies on a heuristic that guesses the position of the target some time in the 

future. In this manner getting good estimates of future positions of the target hopefully 

eliminates the growth in distance. Again, this method is presented in Chapter 5. 

In summary, the path planner as analyzed with a fixed At has some interesting 

performance characteristics. First, the initial distance is closed at a rate of M"^^!. 

As long as the current path is longer than |vs|| (At+Ac), then the distance will improve at 

this rate. As this distance decreases, the seeker vehicle will eventually reach the goal 

of a current path and wait for new trajectory information. At this point, the target vehicle 

moves away from the seeker vehicle. The algorithm performs well at closing the initial 

distance but performs poorly after this distance is closed. Simulation results in the 

following chapter show this exact conclusion. 

4.7    Heading Command Extraction 

After a path is found and smoothed, aside from the 2-turn section, it can be 

stored compactly as the coefficients of the polynomials describing the (x,y) location of 

any point along that trajectory. This section deals with methods for extracting needed 

control commands for the vehicle. 
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Many control systems on-board UAVs are designed to handle a table of vehicle 

heading commands indexed through time. The heading commands needed are not 

ground track headings but the heading of the vehicle. These vehicle headings are sent 

to the control system and executed. In the terms of a UUV, the heading commands are 

differentiated with respect to time to give a heading rate. This heading rate then 

translates to a rudder position. The details of how the control system translates a 

heading into a rudder position is not provided and is considered a black box within the 

UUVs architecture. 

In the presence of current, the vehicle adjusts its heading to counteract the 

effects of current. In this setting, current only effects the velocity of the vehicle (i.e. only 

a first-order effect). The approach taken in this section uses discrete approximations of 

the ground track to find the heading of the vehicle through time. Essentially, as the 

vehicle progresses along the ground track it uses the most up to date estimate of the 

current to adjust the heading of the vehicle. The vehicle must align the body velocity 

vector, Vb such that the current vector, c, plus the body velocity, Vb, vector aligns with 

the ground track heading vector. The vector that results from the addition of c and Vb is 

the ground track velocity vector, Vg. This vector is then used to simulate the trajectory 

in time. The following figure illustrates the interrelationship between these velocity 

vectors. 
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Figure 4.20 Illustration of Heading Command Extraction 

In Figure 4.20 certain parameters of each vector are known for a specific point on 

the trajectory. The current vector, c, is fixed. The magnitude of Vb is fixed, and the unit 

vector in the direction of Vg is known (in the path smoothing chapter this is referred to as 

the unit tangent vector). The needed heading is %. Simple trigonometry yields the 

correct value for Wb. In order to simulate the trajectory in time the more important 

information is Vg. 

For a specific value of s (see Chapter 3), both x and y values can be found. The 

algorithm can loop over all values of s for which the current trajectory is defined or 

terminated at a specific time (i.e. the entire trajectory is not needed). The heading 

extraction algorithm now follows: 
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algorithm Heading Commands; 

initialize As; 
initialize t {= tf of previous trajectory}; 

5 = 0; 

whilefa <sf-As)&(t<tf) 

P^ifisXgisj) 

P2 = {f(s + As),g(s + As)} 

compute T(s) (unit tangent vector of ground track}; 

get c {best estimate of current at time = t}; 

compute Vg,Vb,Yb; 

IIP -P 
t = t+— — {||P2 - P{ is estimate of arc length at s}; 

s= s + As; 

append {t,Wb^to control commands; 

end; 

Figure 4.21 Heading Command Extraction Algorithm 

The heading command algorithm can run in real-time as the UUV traverses the 

current path. In this manner, the most current estimate of the underwater current can 

be used. However, the algorithm can be run ahead of time and the heading commands 

stored for use later by the UUV. 

This algorithm was presented for the part of the trajectory defined by the two 

polynomials. However, a part of the trajectory namely the 2-turn segment is not 

mentioned in this discussion. The heading commands for this portion of the trajectory 

can be found using the same approach. Instead of functions describing the points along 

the 2-turn segment, a list of these points can be stored as output from the 2-turn 

algorithm. Then the algorithm as shown in Figure 4.21 applies, where T(s) is found 

from the first difference of adjacent points along the 2-turn segment. 
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4.8    Implementation Overview 

The entire simulation was coded within a MATLAB environment. The MATLAB 

code serves as the backbone of the path planner and maintains all the needed data for 

the shortest path calculations. The specific algorithm chosen for computing the shortest 

path algorithm is the D* algorithm as developed by Stentz [15], and implemented at 

Draper Laboratory, under funding from the Naval Underwater Warfare Center (NUWC). 

The code is written in C++, and is run on Silicon Graphics workstation (as is the entire 

path planner simulation). A step by step description of the path planner is given below: 

1) Initialization - Initialize all needed problem variables and parameters. (Vehicle 

speeds, map, target track, initial position of seeker, time...) 

2) Get source and goal locations. 

3) Find Shortest Path 

4) Perform 2-Turn Procedure if needed 

5) Smooth Path (constrained model w/o curvature constraints) 

6) Step along new smooth trajectory until goal is reached or new target location 

is requested 

7) If new target information is requested go to step 2 

8) If goal is reached wait until a new target location is requested, then go to 

step2. 

The above description is a gross over simplification of the code. Some of these 

steps must be carried out carefully to correctly model the simultaneous functionality of 

an actual vehicle. For instance, in step 8 the vehicle actual acquires the target location 

and computes the shortest path while waiting at the current node. When a target 

request occurs while the seeker is travelling along a trajectory, the seeker continues 
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travelling along that trajectory until the shortest path code and smoothing complete. 

However, the seeker can only continue along that trajectory for as long as the trajectory 

is defined (i.e. the trajectory ends at the goal of the current path). 

To describe further the code, a more detailed look at some specifics are 

provided. The MATLAB code begins by passing the needed source and target 

information to the shortest path code. Once complete the needed information, including 

the backpointer information is stored within MATLAB. The path is then smoothed using 

optimization routines built-in to MATLAB. From this point the trajectory is simulated in 

time, and the vehicle begins its progression along this trajectory. After At time units has 

expired (or a sensor update is requested), the target's most current position is passed to 

the shortest path algorithm. The simulation is then paused, and awaits the return of the 

shortest path. Once the shortest path algorithm completes, the simulation continues. 

The vehicle continues along the old trajectory for Ac units of time. Now, the path is 

found from current position to target location. The path is pieced using the 2-turn 

procedure, smoothed, and then the simulation continues. Finding the path, 

implementing the 2-turn procedure, and smoothing the path must all occur in near real- 

time. Finding the path is an extremely quick operation as it is composed of following a 

set of pointers (i.e. backpointers) from the current node to the goal. The 2-turn 

procedure is also an extremely fast procedure as it is essentially a closed form solution. 

If the smoothing takes too long, it can be computed while the vehicle travels along the 

2-turn solution. Now, the simulation steps repeat. 

The methods used in the simulation make some assumptions about the vehicle's 

performance. First, the vehicle is assumed to perfectly track a smoothed trajectory. In 

reality, this assumption will not hold. Many factors (e.g. sensor error, current estimate 

error, inertial navigation error, etc.) may invalidate this assumption. However, it is 

assumed that the vehicle is equipped with a real-time controller that is capable of 

correcting for any deviations from a desired path. The controller will not be able to 

maintain the path exactly, but the assumption is made that the controller works well 

enough to create a simulation that disregards this issue. Second, the curvature 

constraint is ignored and any path generated will hopefully not violate this constraint.  If 
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after many simulation runs the curvature constraint is never violated it need not be 

included in smoothing procedure. However, if the curvature is violated, then the vehicle 

controller is assumed to handle this trajectory in an efficient manner. Finally, the time 

for computation is bounded by some value Ac. This assumption allows the path 

computation time to be a parameter of the model. Treating the computation time in this 

manner allows the algorithm to be analyzed at differing levels of computational power. 
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Chapter 5 

Path Planner Performance 

This chapter details the performance of the path planner on a select number of 

test cases. All of the test cases are performed on the same map as shown in the 

previous chapter. The test cases are chosen to represent typical track and trail type 

missions as defined in the Navy Unmanned Undersea Vehicle Master Plan [5]. 

According to this document, the typical mission would involve a UUV acquiring a target 

as it leaves port, and then proceed by trailing the target. As implemented, this type of 

operation is simulated by a target trajectory that leaves its home port (i.e. within the bay 

portion of the map) and continues along the coastline for the remainder of its trajectory. 

If the seeker's trajectory is largely along the coastline, then the seeker will operate in a 

less obstacle dense environment, than if the seeker were to perform a majority of its 

mission within the bay region. However, the planner is also tested under a few different 

scenarios, where the target maneuvers solely within the bay portion of the map. 

The majority of results focus on the tracking ability of the seeker, and not on the 

performance of the path smoothing function of the path planner. The performance of 

the path smoothing is given briefly in order to indicate the accurateness of the 

smoothing techniques. In the context of the test cases, the obstacles are assumed 

buffered by a sufficient amount, such that any incursion of the trajectory with an 

obstacle on the map does not imply a real collision. 

5.1    Description of Test Cases 

The mix of problem parameters defines a test case. These parameters include 

the following: 

1) Trajectory of the Target 

2) Initial Position of the Seeker 
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3) lvs I, & \VT I (magnitude of seeker and target velocities) 

4) At,&Ac (target location update rate, and time allowed for computation) 

In order to create test cases, a few different values or choices were made for 

each parameter. Three different target trajectories were selected and labeled, 

Target1,Target2,&Target3. The first two trajectories begin in the bay and proceed out of 

the bay and along the coastline. The other trajectory stays within the bay for its entirety. 

Three initial positions of the seeker were selected and labeled SltS2&S3. The 

magnitude of the seeker vehicle was fixed for all test cases, and only the target's 

velocity was allowed to change. For all of the test cases |vs| = 18 knots. With the given 

(Vy], the target's velocity was chosen as a percentage of ||VS|. Five percentage levels, 

200%, 100%, 90%, 75%, and 50%, were selected. The 200% choice is selected for 

only one test case and demonstrates the target moving away from the seeker. At was 

chosen at levels of 200,150,and 100 seconds. Finally, the following times were 

selected for Ac: 6, 3, and 0 seconds. In total 18 sample cases are shown and are 

summarized in the following table, 

Test Case Target 

Trajectory 

Initial Seeker 

Position 

IIVTII Ac At 

1 1 1 2.0 3 200 

2 1 1 .8 3 200 

3 2 1 .6 3 200 

4 2 1 .4 3 200 

5 1 3 .8 3 200 

6 1 3 .6 3 200 

7 1 3 .4 3 150 

8 2 1 .6 3 150 

9 2 1 .6 3 100 

10 3 2 .6 3 150 

11 3 2 .6 3 100 

12 1 1 .6 3 200 

112 



13 1 1 .6 3 150 

14 1 1 .6 6 100 

15 2 2 .4 6 150 

16 2 2 .6 6 200 

17 2 2 .4 0 150 

18 2 2 1 0 150 

The test cases are not generated as a result of all possible combinations of the 

problem parameters. Rather, a representative sampling of these combinations are 

chosen. Furthermore, a sufficient difference in At, and Ac was maintained such that the 

seeker is not overburdened with performing computations relative to any progress it 

may make on the target vehicle. In addition, the Ac times of 6 and 3 seconds were 

reasonable times in the face of actual computation times. Actual computations of the 

shortest paths required between 2.5 - 4.5 seconds (in a vast majority of cases). Finally, 

most of the test cases were allowed to run for approximately 3,000 seconds. 

The three target trajectories are shown in the following figures. 
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Figure 5.1 Illustration of Target and Si 
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Figure 5.2 Illustration of Target2 and S2 
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Figure 5.3 Illustration of Target3 and Seeker Initi 
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5.2     Analysis of Test Cases 

The results for the following test cases are summarized in the following 

subsections. For this entire section, the target's position was sensed at fixed intervals 

in time. No propagation of where the target might go is included in this analysis. All of 

the test cases in this section use a fixed At representation. In addition, when the 

terminal state exists, the seeker waits at the current node until a new trajectory is 

available. According to the previous chapter, if the seeker can close the initial distance 

to the target such that the seeker reaches the goal of each path, the error at each 

iteration will grow like IIVTllAc in the worst case. This error propagation was found using 

a worst case analysis, and hopefully will not be experienced in practice. For most of the 

test cases two figures are provided. The first figure illustrates the track the seeker took 

in order to follow the target's trajectory. The second figure illustrates the Euclidean 

distance between the target and seeker versus time. These distances are given in grid 

cell units (50 meters). For some of the test cases, a magnification of one of the figures 

is included to illustrate a specific point. Test Cases 13-18 give just the error plot, and 

not the ground track plot. The ground track plots are excluded because previous test 

cases illustrate sufficiently how typical ground tracks appear 

In the discussion of test case #9, further information about the test case is 

provided. The smoothing error for this case is illustrated in order to validate that the 

smoothing is effective. The same data is present for all the other cases but in the 

interest of too much information, the data is only presented for this specific test case. 

The performance of the smoothing for the other test case is similar and can be inferred 

by looking closely at the target track figures. It should be noted that the smoothing 

technique over all test cases never produced an error greater than 2.0 grid cells. 

5.2.1        Test Case #1 

The following picture, Figure 5.4, illustrates the trajectory of the target and 

seeker. This type of plot is used for the remaining test cases. As with most trajectories 

of the seeker, after some time has expired this seeker trajectory tends to follow the 

trajectory of the target trajectory.  The remaining illustrations will not have the labeling 
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as present in this figure. However, the shading present in this figure, is the same for the 

following test cases and should serve as a means to discern the two trajectories. 

I DO       150       200       250       300       350       400       450       500 

Figure 5.4 Test Case #1 Track 
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Figure 5.5 Magnification of Trajectory Information 
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Figure 5.5 is a magnification of Figure 5.4. It illustrates the shortest path, both 

trajectories, and the 2-turn procedure. No insight should be gained from this picture. 

Rather it is just an illustration of the algorithm in action. 
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Figure 5.6 Test Case#1 Distance Plot 

Figure 5.6 illustrates the distance from the seeker to target versus time. Clearly, 

the distance from seeker to target closes rapidly as the two vehicles approach each 

other. However, as time progresses the distance grows as expected (i.e. the target is 

travelling twice as fast as the seeker). 
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5.2.2 Test Case #2 

Figure 5.7 Test Case #2 Track 

Notice that in Figure 5.7 the trajectory of the seeker vehicle actually looped back 

on itself, as it began to head into the bay. In this example, the seeker was able to track 

the target as expected. 
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Figure 5.8 Test Case #2 Error Plot 

Figure 5.8 shows how the distance from seeker to target closes rapidly, at first. 

This is a function primarily of the geometry of the problem. After approximately 1000 

seconds the seeker is in a true trail type mission. The distance does not strictly 

decrease because the seeker frequently arrives at the goal of the current trajectory 

before a new trajectory is ready. Previously defined as the terminal state condition, this 

condition frequently increases the distance from seeker to target. However, this error is 

at least partially counteracted by the progress made toward the target at each iteration. 

As will be seen with most of the other plots, after the initial distance is closed, the 

distance from the target seems to oscillate. Again, this occurs when the seeker travels 

to the goal of the current path, and waits at that goal location until a new target location 

is available. The target is able to pull away from the seeker while the seeker waits for 

the next At +Ac to expire (i.e. the seeker must wait for both the target location and the 

path for that target location). 
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Figure 5.9 Magnification of Error Plot 

Figure 5.9 is provided to illustrate the terminal state condition. At approximately 

1975 seconds the seeker is approximately 24 x 50 meters from the target. For the next 

50 seconds the distance grows linearly through time. This corresponds to the seeker 

waiting at a node while the next path and trajectory are created. 

5.2.3 Test Case #3 
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Figure 5.10 Test Case #3 Track 
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Figure 5.11 Test Case #3 Error Plot 

5.2.4       Test Case #4 

Figure 5.12 Test Case #4 Track 
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Figure 5.13 Test Case #4 Error Plot 
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5.2.5        Test Case #5 
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Figure 5.14 Test Case #5 Track 
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Figure 5.15 Test Case #5 Error Plot 

5.2.6        Test Case #6 
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Figure 5.16 Test Case #6 Track 
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Figure 5.17 Test Case #6 Error Plot 

5.2.7       Test Case #7 

Figure 5.18 Test Case #7 Track 
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Figure 5.19 Test Case #7 Error Plot 

5.2.8       Test Case #8 
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Figure 5.20 Test Case #8 Track 
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Figure 5.21 Test Case #8 Error Plot 

5.2.9       Test Case #9 
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Figure 5.22 Test Case #9 Track 
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Figure 5.23 Test Case #9 Error Plot 
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Figure 5.24 Error due to Smoothing 

Figure 5.24 shows the error due to the smoothing the shortest paths. In the error 

is displayed for the error due to smoothing twenty of the shortest paths.   At every 

127 



iteration of the path planner, the trajectory must be smoothed.     In addition, the 

maximum computation time over all of these smoothing operations was 0.57seconds. 
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Figure 5.25 Error Due to 2-Turn Procedure 

Figure 5.25 illustrates the error associated with the 2-turn procedure. Some 

paths did not require the 2-turn procedure because the initial velocity vectors were 

already aligned. This plot is in terms of r, which was set to 25 meters. This choice of r 

is arbitrary, and is dependent on the vehicle. In context of this application, it was 

assumed the seeker could accomplish a complete turn inside a grid cell. Thus, the turn 

radius, r, for this vehicle is 25 meters. Therefore, the max error associated with the 2- 

turn procedure over the entire life of this mission is 15 meters. 
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5.2.10  Test Case #10 
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Figure 5.26 Test Case #10 Track 
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Figure 5.27 Test Case #11 Error Plot 
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5.2.11      Test Case #11 

600 

500 

400 

300 

100 

KT' 

■ / JH 

i ^H 

J^r * 

' '            '  i i  

100 200 300 400 500 600 
Y 

Figure 5.28 Test Case #11 Track 
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Figure 5.29 Test Case #11 Error Plot 
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5.2.12  Test Case #12 
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Figure 5.30 Test Case #12 Track 
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Figure 5.31 Test Case #12 Error Plot 
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5.2.13      Test Case #13 
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Figure 5.32 Test Case #13 Error Plot 

5.2.14      Test Case #14 
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Figure 5.33 Test Case #14 Error Plot 
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5.2.15      Test Case #15 
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Figure 5.34 Test Case #15 Error Plot 

5.2.16      Test Case #16 
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Figure 5.35 Test Case #16 Error Plot 
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5.2.17     Test Case #17 
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Figure 5.36 Test Case #17 Error Plot 

5.2.18      Test Case #18 
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Figure 5.37 Test Case #18 Error Plot 
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5.3    Insight into Test Case Performance 

Almost every test case experienced some slow growth in the error bound after 

the initial distance was decreased. The only two test cases that showed negligible 

increases in the error were test cases 17, and 18. These two test cases were 

generated by setting Ac=0. Thus, the computation time, as conjectured, is expected to 

have an affect on the distance from seeker to target. 

If the seeker is close enough to the target location for the current path, the 

seeker will reach that target before the next target location is available to the seeker. 

Therefore, the seeker must wait at the target location of the current path until the next 

trajectory is available (i.e. the seeker must wait for next the target location to become 

available and wait for the additional computation time associated with creating a 

trajectory to that target location). This stop and wait behavior is evident in the end of 

every test case as demonstrated by the oscillatory nature of the error plots. The 

following error plot is a magnification of the error plot for test case #16. 
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Figure 5.38 Illustration of Cycling Behavior 
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The bottom of each oscillation in the error plot refers to the point at which the 

seeker first reaches the goal of the current path. At this point, the seeker waits, and the 

target begins to move away from the seeker. At the peak of each oscillation the seeker 

begins to move towards the target. Figure 5.38 shows how the maximum distance 

between the seeker and target begins to slowly increase through time. The peak of 

each oscillation gives the maximum distance. 

The increase in the maximum distance is due to the fixed rate of the target 

vehicle's position updates. Once the seeker closes the initial distance, the seeker 

begins to travel between the locations of the target position updates. In the previous 

chapter, the worst-case scenario was developed as a seeker travelling directly behind a 

target, travelling a straight line. After the initial distance is closed, the target track 

figures display a behavior that is not far from the assumption. Therefore, the analysis 

from the previous chapter should provide insight into the performance of the path 

planner after the oscillatory behavior in the error appears. The analysis from the 

previous chapter is repeated and connected to the actual implementation. 

The following analysis is for the worst case path, but is provided again for insight 

into what is happening in the actual test case. In this scenario the seeker is continually 

reaching the goal of the current path. As defined, the goal locations of each path are 

the target vehicle's positions as passed to the path planner. Therefore, the distance 

..    .. IK II A* from one goal to the next goal is ||Vr|| At. The seeker is able to travel for "   "     units of 

time and must wait at the current node until a new trajectory is available.   Since each 

WJAt   t 
iteration of the algorithm lasts At+Ac units of time, the vehicle waits At + Ac-"   "    at 

II   s\\ 

the goal of the current path. This implies a non-zero wait at the goal of the current path. 

For a given path under this scenario, the target progresses for the entire At+Ac time 

and the seeker travels for \r".    time.   The target moves ||vr|(A/+Ac)units, and the 

seeker moves \\V' 
"VJ|A^ 

units towards the target.  In order to see the progress made 
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in the direction of the target, the distance traversed by the target is subtracted from the 

distance traversed by the seeker.   This distance is termed Adimprmement.   If Adimprmement is 

positive, improvement is made.   If Adimprovemem is negative then the target moves away 

from the seeker. 

improvement       11*11 Ml 
\VT\\(At + Ac) 

(5-1) 

Simplifying, the above equation yields the following insight. 

^improvement = ~ \\VT \\ Ac (5-2) 

Therefore, under the assumption that the seeker is repeatedly travelling all the 

way to the current goal, then Adimprovement is negative, implying that at each iteration the 

distance from the seeker vehicle to the target vehicle grows according to (5-2). 

Is this the error seen in practice? For the test cases chosen, this growth is very 

close to what is seen. In terms of Figure 5.38 the difference in the peak of one 

oscillation to the peak of next oscillation refers to   Adimpwvemenl.    Clearly, there exist no 

improvement in the peaks, and from the majority of test cases performed the peaks of 

these oscillations appear to grow linearly in time. Therefore, a modification of the 

current scheme is needed. 

Once the seeker closes the initial distance and begins to attain the goal of the 

current path, the improvement at each iteration needs to be non-negative. If 
AdimproVement ^°> then tne peaks of the oscillations in Figure 5.38 will not grow as time 

progresses. The following section details a few methods of dealing with this condition. 

5.4    Improvements to Path Planner 

5.4.1        Wait Approach 

Within the context of the fixed sensor updates, the seeker vehicle could decide to 

wait for an extended time period at a goal node (ignoring any sensor updates), allowing 
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the target vehicle to move sufficiently far away from the goal. Essentially, the seeker is 

now capable of moving for a further amount of time, because the target vehicle is 

sufficiently far away. The seeker needs to wait such that the target is at least 

Ar + Actime units away and then use this position as the next goal. The performance 

expected is similar to the initial closure seen in the error plots. This method albeit 

acceptable is not developed in context of the simulation. 

5.4.2       Heuristic, with Fixed At 

Up until this point, the path planner uses target locations identified at specific 

points in time, as the goal to which the seeker is travelling. Theoretical results and 

simulation, have shown that the vehicle will eventually close the initial distance and then 

begin reaching the goal of the current path before a At time segment has expired. 

Equation (5-2), states that in the worst case the error will increase at each iteration. If 

simulation results did not support such a conclusion (i.e. the worst case never occurred 

in practice), then the current methodology may be acceptable. However, this situation 

is not the case. 

How can the improvement at each iteration be assured of non-negativity7 If we 

maintain that the target information is incorporated at fixed intervals, a heuristic that 

guesses where the target may be located in the future may improve the performance of 

the algorithm. If the seeker can guess the target's location e time units before leaving 

the current goal, it may be possible to reduce the waiting time at the current goal. For 

instance, if At=100, Ac=3, and the current path only takes 50 seconds to complete, the 

seeker must wait for 53 seconds at the current node. The seeker will arrive at the goal 

of the current path and after 50 seconds of waiting the latest sensor update is provided. 

Then 3 seconds must expire before a trajectory exists for the seeker. Instead imagine 

that the seeker is capable of guessing the location of the target after 97 seconds have 

expired. The seeker is then capable of leaving the current goal along a new trajectory 

after waiting at the node for only 50 seconds. Now let e, be defined as the look ahead 

ability of the seeker. In the example, £ = 100-97 =3 time units. Since we waited only up 

to At - e time at the current node, we would expect a performance increase.    For 
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simplicity let e=Ac. Now, the vehicle is not penalized for waiting the extra Ac time units 

at a goal. The target now does not travel for the extra Ac time period, as present in the 

previous analysis.   Under this scenario what is Adimpwvement ? 

Under the same assumption, that the vehicle is in the oscillatory behavior (i.e. 

reaching the goal of the current path), the seeker is able to travel for "   "      units of 

time.. Now, the target is travelling, for A*time units. Now, Adimprovemen,, becomes 

-Kll(^) improvement       \\   s \ 

M(AQ 
IK v (5-3) 

simplifying to, 

improvement (5_4) 

The method by which one chooses the estimated position of the target at some 

time in the future is largely application specific. One method would use the estimated 

velocity vector of the target and project the current point forward in time. Problems may 

result if this point is an area that is determined to be an obstacle. At this point one could 

step in time from Oto e, and compute the estimated location. If the estimated position is 

within an obstacle then use the previous position that is not within an obstacle. 

This method was tested on various test cases and demonstrates good 

performance. In this setting a perfect heuristic is available and is the one used. Later 

research would need to incorporate a heuristic that models an inexact heuristic. In the 

following test cases, e =Ac and ||vr|| = .6||v5||. The first test case demonstrates a typical 

worst case scenario where the seeker is trying to track a target travelling along a 

straight line. 
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Figure 5.39 Test Case with Heuristic 
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Figure 5.40 Error with Heuristic 
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Figure 5.40 shows how the error does not seem to increase as time progresses. 

In fact, after the initial distance is closed the improvement at each iteration seems to be 

close to zero, as expected. A few more test cases were performed to further validate 

this result. 

600 

500 

400 

Figure 5.41 Track #2 Using Heuristic Guess 
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Figure 5.42 Error Plot #2 with Heuristic Guess 

The second example, is the same track as followed in test case #16. However, 

now the simulation was allowed to continue for 5000 seconds, lending more credibility 

to the technique. Once the oscillatory behavior begins, the distance from seeker to 

target does not seem to grow as time progresses. 

5.4.3        Variable At Approach with Varying Seeker Velocity 

Another approach to the increasing the error is to incorporate a variable At into 

the model. The root of the problem lies in the vehicle having to wait at the goal of the 

current path. The seeker must wait for a new target location and wait for that target 

location to be incorporated into a trajectory. This wait is illustrated in Figure 5.38. If this 

wait were eliminated then growing error could be eliminated. A methodology for 

performing this approach would dictate that the planner could request the current 

position of the target, Retime units before the goal of the current path. In this manner, 

the terminal state condition is eliminated from consideration. Therefore, upon reaching 

the current node, a trajectory exists in the direction of the target. In this setting, the 

seeker vehicle does not need to guess where the target vehicle may travel in the future. 

Immediately upon attaining the goal of the current path, the seeker vehicle begins to 
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traverse a trajectory immediately upon reaching a goal node. However, the seeker is 

not travelling to the most current location of the target. Rather, the seeker is travelling 

to the target location found Ac time units in the past. If this logic continues the seeker 

will move closer and closer to the target. However, a condition must be maintained that 

the length of any path traveled by the seeker must be greater than IIVsllAc. Otherwise, 

the target request that is supposed to occur Retime units before the goal of the current 

path cannot occur. In order to maintain this condition the speed of the seeker can be 

adjusted. Specifically, once the seeker vehicle closes to an acceptable distance, the 

seeker vehicle should attempt to match the speed of the target. This acceptable 

distance must be constructed such that no path is less than Ac\n length. 

Suppose the seeker is at the acceptable distance threshold, dt, and is travelling 

at the same speed as the target vehicle. In the worst case path as presented in the 

previous chapter, the improvement at any iteration becomes zero. This is easy to see 

because the seeker never has to wait and is travelling for the same amount of time as 

the target. The lower bound for dt is lvs\\Ac, if |V7|HKI • The bound is enforced by the 

path length criteria (i.e. a path must be greater than or equal to ||V5|Ac ). At dt =\\Vs\\Ac, 

the seeker vehicle requests a target update upon leaving the source of the current path. 

Since the path takes Ac time units to complete, a path is ready for travel exactly when 

the seeker arrives at the goal of the current path. Now the goal of the current path is 

the source for the next path. Again the seeker requests a new target update after 

leaving this node, and upon reaching the next goal a path is available. The seeker 

keeps tracking in this manner, maintaining the ||vs| Ac separation form the target. 

In practice, one may wish to set the lower bound on d, higher than as described. 

Since, the computation time is rarely a fixed parameter, one may wish to ensure that the 

path length is some degree larger than the estimated computation time. 

This variable approach given above could be blended with a fixed At model. 

When the vehicle is far from the target the fixed At approach may be more acceptable. 

For instance, it may benefit the seeker vehicle to update the position of the target while 

it is travelling along a long trajectory.  After the computation is complete the vehicle is 
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then capable of following that new path. Specifically, if a path is longer than AtfiXed + Ac, 

then at At on the current path the position of the target is acquired. Thereby, at Atfixed + 

Ac, on the current path, the seeker vehicle will begin travelling along the new trajectory. 

If a path is less than Atfixed + Ac, then the variable approach should be implemented. In 

this blended approach, Atfixed is a parameter and set by the mission planner, or set by 

the system designer. 

In implementing this algorithm, some rough adjustments were made to the 

velocity of the seeker vehicle. If the next path was less than a certain distance then the 

seeker's speed was set to a fraction of the target's speed. This behavior of traveling 

slower than the target allows for the distance to grow, and penalizes the seeker for 

getting to close to the target. If the distance of the next path was within a certain 

acceptable range then the seeker's speed was set to the speed of the target. If the 

distance grew larger than a certain multiple of the desired distance then the seeker's 

velocity was set to the average of the target's speed and the maximum speed of the 

seeker. Finally, if the distance is over a certain upper threshold level then the seeker is 

tasked with travelling at its maximum speed. Varying the speeds of the vehicles in this 

manner is largely an ad hoc approach. More research needs to develop the optimal 

speed adjustments that should be made. 

In order to address the validity of this approach a few simulation runs were 

performed. It is understood that the manner in which the seeker's velocity vector is 

chosen is without regard to any optimal choice of the velocity. The method that is 

employed seems to work in practice and is given below: 
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if (goal(i + l\ime - goal(i)time) < Ac 

seeker speed = .8(target speed); 

else if (goal(i + l)lime - goal(i)Hme) < 2Ac 

seeker speed = target speed; 

else if(goal(i + l\ime - goal(i)lime) < 4Ac 

seeker speed = (max seeker speed + target speed)/2; 

else 

seeker speed = max seeker speed; 

Figure 5.43 Rule Used for Adjusting Seeker Speed 

In Figure 5.43, each goal location is time indexed as is meant by the notation 

goal(i)time. The time index refers to the point in time the target location was passed to 

the path planner. If these times begin to get to close together, then the seeker may get 

too close to the target location. In addition, if these goals are less than Ac apart then a 

new trajectory may not be available upon the seeker's arrival at the goal of the current 

path. A sample test run of test case #16 is given to show the performance of this 

approach. The only change in the test case parameters is that At is now variable and 

Ac is 15 seconds . The upper bound on At was set to 200 seconds such that a 

trajectory lasting longer than At + Ac = 215 seconds was not allowed to occur. 

145 



1500   2000 
Time (sec) 

3000   3500 

Figure 5.44 Error Plot with Variable At Approach 

Figure 5.44 shows how using the variable approach can maintain about a 10 x50 

meter separation from the target for this specific test case. In order for this method to 

work, the amount of time the seeker spends on each path must be greater than Ac. The 

following plot shows the amount of time the seeker spends on each path. 

yoor 

180 - - 

160 - - 

140 - - 

120 - - 

100 - - 

80 - - 

60 - 

40 - 

20 - 

\/VWwW\ AtA^^vJ^r^      ■ 

0L 

0 10          20          30 40           50          60          70          80          9 
Iteration Number 

Figure 5.45 Plot of Path Times 
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Figure 5.45 shows a plot of the amount of time the seeker spent on each of the 

81 paths created during the simulation. All but one of these paths (iteration #34) is 

longer in length than the Ac lower bound of 20 seconds. Even with the careful 

adjustments made to the velocity of the seeker, this bound is still capable of being 

violated. More research into how the speed of the seeker should be adjusted could 

alleviate this problem. However, within this simulation, the Ac value was chosen much 

larger that the actual time the needed to compute a shortest path. A path was usually 

ready in under 4 seconds, implying that the bound was not actually violated. If a path is 

less than the Ac specified for the mission, then the seeker cannot get a new trajectory 

position. Therefore, whenever the seeker leaves the start of the current path, it guesses 

where the target will be when the seeker reaches the goal of the current path and 

begins planning for that location. If the seeker makes no new target requests during the 

current path, this guess will be used for the goal of the next path. The method for the 

guess is the same as presented in Section 5.4.2. The following trajectory may not be 

available to the new target location by the time the seeker reaches the goal of the 

current path. In this case the seeker must remain at the goal of the path until the 

trajectory information is returned. However, choosing a Ac larger than the typical 

computation time seen in practice, may result in a path being available at the goal of the 

current path even if the current path took less than zlctime units to complete. 

In conclusion, the variable At approach is an improvement over the fixed At 

method. With careful adjustments to the seeker's velocity, an upper bound of the 

distance from the target could be realized. In addition, the stop and wait characteristic 

seen in the fixed At method is alleviated in this model. Further research into how one 

varies the speed of the seeker is needed to fine-tune this approach. In the current 

implementation the velocity is set for the entire current path. There is no reason that the 

velocity of the seeker cannot change while it traverses the current path. Such a 

modification may yield better performance. The variable At model was run on many of 

the test cases as presented for the fixed At model. These results for the subsequent 

models follow closely to those shown in Figure 5.44 and Figure 5.45 and as such, the 

plots are not included.. 
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5.5    Summary 

The framework for the path planner has been developed and implemented within 

a simulation, showing the effectiveness of the path planner. Even though the fixed At 

case as illustrated in the 18 test cases, shows some limitations, the simple fix using the 

heuristic approach eliminates the error growth. The results presented within this 

chapter demonstrate that the analysis for the worst case result is applicable to sample 

type problems. Therefore, in designing a moving target search one cannot rely solely 

on target location information that is incorporated at a fixed rate. Even without the 

heuristic fix, the planner is able to close the initial difference in the two locations. 

However, once the seeker begins to repeat the terminal state, the growth in the distance 

from seeker to target begins to grow. This conclusion may seem counterintuitive, 

however, once the vehicle begins to wait at a node the target still travels and increases 

its lead. Furthermore, once the terminal states begin to repeat, the distances between 

goal locations are function of the target's speed and the update rate, At. Since, the 

target never stops moving the distance that the target vehicle improves upon while 

travelling towards the target is less than the penalty associated with waiting. The 

penalty is a result of the extra Ac wait, and by eliminating this wait, the seeker can 

ensure that the target will not begin to pull away from the seeker. 

The variable At approach, is a much better method, and eliminates the terminal 

state condition. Aside from the advantages this method has in terms of tracking the 

moving target, from a vehicle controllability point-of-view this type of planner is superior. 

Making a vehicle wait at a node may not be feasible or it may not be an easy maneuver 

for the vehicle to handle. 

Up to this point, the assumption has been made that Ac is a parameter of the 

model. Clearly Ac is not a parameter and a real-time variable in the model. The level of 

performance desired in the tracking capability should be developed for an upper bound 

of Ac, as found from repeated simulation runs. These simulation runs would have to 

incorporate the actual hardware on-board the vehicle. If the simulations are of a high 

enough fidelity, then this determination of Ac should work in practice. 
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The fixed At method with or without the heuristic may be simple to implement on 

certain vehicles. However, in the context of UUVs the variable At method makes more 

sense. Tasking a UUV to stop and wait at a certain location may be a very difficult 

maneuver. For starters, a UUV has momentum and usually sluggish dynamics. 

Thereby, stopping the vehicle at a certain point is difficult. Secondly, the presence of 

underwater currents may make hovering at a certain location difficult as well. 

The approaches and code developed for this simulation will be the starting point 

for the track and trail mission envisioned for the Navy's future UUVs. In a few years the 

Navy hopes to test their next generation UUV test vehicle as it performs the track and 

trail mission. The work performed in this thesis should prove extremely beneficial to this 

new test vehicle and the track and trail mission. This test vehicle will then be able to 

assess the performance of these algorithms on-board an actual UUV. 
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Chapter 6 

Conclusions and Future Work 

6.1    Overview 

The objective of this thesis was to create an efficient path planner for a UAV, 

tasked with tracking a moving target. This problem was tackled as a series of static 

shortest path problems. A simulation was created that validated the approach taken by 

the path planner. The simulation provides a tool to analyze the path planner under 

different scenarios. Given a planar gridded map, the simulation can assess the validity 

of the moving target path planner for a specific vehicle. 

In order to develop the moving target path planner, a thorough description of how 

the environment is discretized and transformed into a network is given. With the 

assumption that the vehicle is unable to follow a jagged path, a large portion of this 

thesis is devoted to methods for smoothing jagged paths. With the network shortest 

path, and path-smoothing tools in place, the actual path planner is developed. The 

framework for the path planner is capable of finding continuous paths from a seeker 

location to a target location as the seeker traverses its environment. Choosing a 

constant target update rate was shown to demonstrate poor worst case behavior. If the 

seeker is only able to acquire target information at a fixed rate, then a method 

employing a heuristic is provided. This heuristic attempts to eliminate this worst case 

behavior. However, if the vehicle is able to incorporate a variable rate approach then a 

better method is presented. An added benefit of the variable update approach is the 

elimination of the terminal state condition. 

The methodology and algorithms presented in this thesis will hopefully be put to 

use an actual vehicle in the near future. The Navy has identified the need for a UUV to 

perform a track and trail type mission. This thesis provides an efficient approach to this 
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problem and simulation results have demonstrated the feasibility and performance of 

the path planner on these types of missions. 

6.2    Planner's Capabilities 

The framework for the moving target path planner has been shown to perform 

well in tracking a moving target. Simulation results have shown that a seeker vehicle is 

capable of closing the initial distance between the seeker and target, and then 

maintaining a certain distance from the target throughout the remainder of the mission. 

The planner exhibits the best performance if variable updates to the target's position are 

possible. However, if the seeker is limited by fixed rate information then a moving target 

can still be tracked. However, this approach requires the seeker vehicle to stop and 

start. Stopping the vehicle and then starting may not be a feasible option on many 

vehicles. Therefore, the variable rate approach will usually be preferred. 

The ability to plan paths that are capable of tracking a moving target can operate 

independently of the manner in which the actual trajectory is followed. The shortest 

paths produced are from a graph whose nodes are locations on a planar map of fixed 

grid size. In order to maintain the slope continuity of a path, the resulting shortest paths 

are smoothed. The smoothing procedures showed promise in their ability to closely 

follow typical shortest paths. However, once a path is smoothed the resulting trajectory 

may cross into an obstacle. The obstacles must then be buffered by an amount equal 

to the maximum error due to smoothing. The amount of buffering to be performed is 

largely dependent on the nature of the jagged path that is to be smoothed. For the type 

of paths seen in the application chosen, a buffering of 2 grid cells should be sufficient. 

This translates to buffering the obstacles by 100 meters. If the map had higher 

resolution, the 2 grid buffering result may not be applicable. The shortest paths on 

these grids may be sufficiently more jagged, causing the smoothing techniques to 

exhibit greater error. The unavailability of higher resolution bathymetry data limited the 

ability to perform this analysis. However, as the grid size decreases, it is likely that the 

amount of buffering (in meters) will also decrease. If the map is stored at 10 meter 

resolution, a 4 grid buffering may be sufficient (40 meters).  It is highly unlikely that with 
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10 meter grid data, a buffering of 10 grid cells will be needed.    Therefore, if the 

resolution increases the amount of buffering will likely decrease. 

In the simulation, the path planner uses a 2-D fixed grid map as the network. 

Experience gained under the AMMT program suggested that care must be given to the 

complexity of the shortest path problems. Therefore, this thesis focused on planning 

without the added dimension of vehicle heading, in hopes of reduces the complexity of 

the shortest path algorithms. If the vehicle is to travel in the plane, a network whose 

nodes are locations on the 2-D map may or may not be sufficient. Adding a third 

dimension, 0, which represents the vehicle's heading may be needed. However, in a 

gridded map system adding this dimension can cause the network to drastically 

increase in size. With the map data provided, the ability to plan with only the 2-D grid 

map is shown to be sufficient in the simulation. If the heading of the vehicle is included 

as an extra dimension in the network, the path-smoothing component of the planner is 

no longer needed. Each arc in the path will represent an explicit trajectory along the 

arc. 

The ability of the seeker to track the moving target was measured in the results 

chapter as the distance between seeker and target through time. In the fixed rate 

approach the seeker showed good performance at closing any initial distance from 

seeker to target. However, once this distance is closed, most test cases showed how 

the distance began to slowly grow through time. Modifying the manner, in which the 

target location is chosen, allows the fixed rate approach to exhibit better performance. 

In the presence of a perfect heuristic the error growth is eliminated. The approach 

using target locations that can be updated at a variable rate, shows more promise of 

effectively tracking the target. Careful modifications to the seeker's speed can fine-tune 

this approach so that the seeker maintains some approximate distance from the target. 

In general, this distance that the seeker maintains between itself and the target is a 

function of the computation time for producing a shortest path. In the fixed rate 

approach the distance that is maintained depends more on the rate at which target 

updates are provided. Since target updates cannot be incorporated at a faster rate than 
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the computation time, the variable approach should exhibit closer tracking.    This 

statement is supported by the simulation results. 

Another capability of the path planner is its ability to handle the underwater 

currents. Since the planning is performed without reference to vehicle heading, the 

current is not incorporated in the arc costs. Rather, it is used to adjust the heading 

commands that are generated for a given trajectory. The only restriction on the current 

in this approach is that the magnitude of the current must be less than the magnitude of 

the seeker's velocity. 

6.3    Future Work 

The simulation and analysis included in this thesis have demonstrated the 

feasibility of a moving target path planner. The research performed will serve as a 

guide for the United States Navy in its future quest to employ unmanned underwater 

vehicles (UUVs) with the track and trail mission capability. Before these algorithms are 

put on-board a vehicle some further research may be needed. Likewise, before these 

algorithms are employed on a vehicle as part of the fleet of the United States Navy 

some more advanced behaviors may need to be addressed. 

6.3.1        Network Shortest Paths 

The data structure used to store the network was a 2-D array, with the centers of 

each grid representing a location in the environment. Using a fixed grid size, resulted in 

much of the memory storing large contiguous regions of 1's and O's. Future research 

should attempt to incorporate quadtrees or framed quadtrees as a means to store the 

map and the network. These data structures should decrease the size of the network 

while maintaining similar properties of the resulting paths. Reducing the size of the 

network may allow for the vehicle to plan with respect to heading. Incorporating 

heading into the planning, albeit expensive in terms of network size has many 

advantages. The advantages included the incorporation of current into path costs and 

the elimination of path smoothing (and the error inherent in smoothing a path). 
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Research at Draper Laboratory is currently focusing on the presence of dynamic 

obstacles, and the ability to repair shortest paths while a vehicle traverses along these 

paths. The D* algorithm is capable of handling this dynamic nature of the data. The 

research performed for the moving target planner, assumed the map as static. In an 

actual implementation this assumption may not prove true. Therefore, research needs 

to blend the work performed for dynamic obstacles with the moving target planner. 

Incorporating the changing information into the moving target path planner should not 

be too difficult as the algorithm used, D*, should be able to repair the paths as needed. 

Up until this point no mention has been made of planning in the three spatial 

dimensions {x,y,$. Currently, plans are either executed at a constant depth or a 

constant altitude from the sea-floor. Clearly, there may be circumstances where 

planning in the three spatial dimensions will yield more efficient paths. Nothing in the 

moving target planner prohibits planning with a 3-D spatial map. In addition, all the 

smoothing extends to the third dimension. If the extension is made to this dimension, 

the use of advanced data structures, namely octrees or framed octrees, will be needed. 

If one then wishes to add vehicle heading, a fourth dimension is needed. Likewise, a 

fifth dimension, vehicle pitch, may be needed in this type of representation. If all 5 

dimensions are used, then a very efficient storage of the map and network is needed. 

6.3.2        Path Smoothing 

As previously mentioned, the path-smoothing was needed due to the choice of 

not planning with respect to vehicle heading. This choice was motivated by the large 

network size inherent when vehicle heading is added to the network. If the choice is 

made to plan in only two dimensions (vehicle position), then smoothing the paths is 

necessary. As mentioned in Chapter 3, modifications to the 2-turn algorithm could be 

used to smooth any jagged portion of a path. The advantage to this approach is that 

the curvature constraint will never be violated. A comparison of the optimization method 

to the modified 2-turn is an area for future research. 
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6.3.3        Smart Behaviors 

If the seeker vehicle is tracking an enemy submarine, then behaviors that 

eliminate exposure of the UUV to excessive risk of detection will need to be addressed. 

It may be advantageous to the seeker to travel in a certain relative location to the target 

vehicle, to minimize detection by the target. In addition, the seeker vehicle may wish to 

hide along an obstacle while still following its target. A whole host of advanced 

behaviors may be desired. How these advanced behaviors can be incorporated into the 

planning of paths is an open area of research. 

In addition, the moving target planner that makes use of target locations that are 

updated at a variable rate, needs further analysis of how the speed of the seeker 

vehicle is adjusted. Currently, the seeker's speed is set for an entire trajectory 

depending on how far the current goal is from the seeker's position. Adjusting the 

speed while traversing along a trajectory may yield a track, which can maintain a 

constant deviation from the target's location. 

6.4    Conclusions 

The goal of this research, to create an efficient moving target path planner, was 

attained. Casting the moving target trail mission as a series of shortest path problems in 

a network allows the problem to be solved in an efficient manner. The resulting path 

planner is capable of tracking and trailing a moving target. Results from the simulation 

showed that the worst case behavior for the fixed rate approach is realized in practice. 

This realization motivated the creation of two modifications to the original approach. 

Both of these modifications demonstrate the ability of the path planner to overcome the 

shortcomings of the fixed rate approach. 
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Appendix A 

A.1    Description of D* Algorithm 

This appendix gives an algorithmic description of the D* algorithm as presented 

in [15]. The description given here is a modification of Stentz's description. Chapter 2, 

presented the algorithm as capable of finding the shortest path on a network with limited 

or dynamic information. Specifically, the algorithm is designed to find shortest paths on 

a network, where the arc cost change as a vehicle traverses the environment. The 

changes may result from any general source of dynamic information. The algorithm is 

designed for a vehicle with an on-board sensor, which senses the environment close to 

the vehicle. Thus the algorithm is designed to most efficiently handle changes to the 

environment near to the seeker. 

This algorithm is implemented within the path planner simulation. The 

implementation does not utilize the dynamic nature of the algorithm, as the path-planner 

assumed static information. Further research into the moving target problem could 

incorporate changing environment information using the D* algorithm. The advantage, 

of this algorithm is its explicit storage of the backpointer information. General shortest 

path algorithms need only store this information for those nodes on the shortest path. 

This algorithm maintains a complete storage of the backpointer list. 

A.2   Variable Descriptions 

The D* algorithm uses the following quantities and structures to operate on a 

given graph. 

•   Open List (S): This list is used to propagate information about changes in the 

arc costs. It propagates the information by storing the states whose path 

estimate has changed but has not been accounted for in the shortest path 

calculations. 
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• t(i): A tri-state flag associated with every node i eN. The value of the flag is 

determined as 

NEW    if i has never been on the OPEN list 

f(i) = «    OPEN   if i is currently on the OPEN list 

CLOSED if i is no longer on the OPEN list 

The flag is set to its appropriate value whenever it is inserted or deleted from the 

OPEN list 

• d(i): The current estimate of the shortest path from i to destination t. 

• o(i): The optimal shortest path o(i) form i to t. 

• b(i): The backpointer of node i. If i succeeds; in the estimated path from s to t, 

then b(i)=j. 

• k(i): The key function k(i), is the minimum of d(i) before modification and all 

values d(i) assumed by i since it has been placed on the OPEN list. 

• mode(i): Every node exists in one of two distinct state called modes. The mode 

i e N is defined as 

J/M    \LOWER if k(i) = d(i) 

\ RAISE  if k(i) < d(i) 

• kmin: kmin is the minimum of the key functions of all nodes currently on the OPEN 

list.   kmin = min{k(i): t(i) = OPEN]. 

• koid: kmin prior to the most recent removal of a state from the OPEN list. K^d is 

undefined if no state has been removed from the OPEN list. 

The goal of the D* algorithm is to maintain a monotonic sequence {X} of states 

that defines a set of lower bounded path costs for each state Xt that is currently, or was 

once on the OPEN list. A set of nodes {Xv..Xn} is called a sequence of states [X] if the 
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backpointer of Xi+] /sX, V i: \<i <n. A monotonic sequence, hence, defines a path from 

source to destination. 

Initially all the states are set to NEW, the estimated distance to the source s is 

set to 0. And the source is placed on the OPEN list (S). After initialization, the algorithm 

calls the PROCESS-STATE function repeatedly. PROCESS-STATE, when run 

repeatedly, calculates and returns either the shortest path to the destination t, or 

determines that the goal can never be reached. After the shortest path has been 

calculated, the vehicle can start approaching its target on this path. If an obstacle 

blocks the pre-calculated path, the function MODIFY-COST is called, which corrects the 

cost of the arcs, and clears the way for the PROCESS-STATE to recalculate the ideal 

path again. 

algorithm D*(G) 

begin 
//initialize variables 

t(i):=NEWVieN; 

d(s):=0;t(s):=OPEN; 

S.■={*}; 
while X * t; 

//compute shortest path 

while XeS 
PROCESS-STATE; 

//shortest path {X} is now computed 

proceed on {X} until obstacle is detected; 

if obstacle is detected 
MODIFY-COST; 

end; 
end; 

PROCESS-STATE starts by removing the node X with the lowest key function 

k(X) from the OPEN list. If the OPEN list is empty and our current state is not our 

destination, then our goal is unreachable, and the algorithm should exit and notify user 

about the infeasibility of the solution. 
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If X is the RAISE mode, its path might not be optimal. The function first checks if 

the cost of state X can be lowered. The cost of state X can be lowered, if there is a 

neighbor of X,Y, that has a d(Y) +cxy<d(X). If there is such a neighbor, the backpointer 

of X is set to Y, and d(X) is set to d(Y) + cxy. 

If X is in the LOWER mode, then its path cost is optimal, and its neighbors will 

have to be analyzed. If a neighbor, Y, is found to (1) have a cost greater then the cost 

of getting to X plus the cost of getting from X to Y, or (2) t(Y) = NEW, or (3) the 

backpointer of Y is X, but the value of d(Y) is not d(X) + c^, then the backpointer of Y is 

updated to X, and the cost of Y is set to the cost of X plus the cost of the arc (X,Y). Any 

neighbors that were altered are entered into the OPEN list. 

If X is neither in the LOWER nor RAISE state, then the function ensures that the 

values of each neighbor is valid and that no looping occurs. 

procedure PROCESS - STATE () 

begin 
//check for feasibility 

if \s\ < 1 then solution is infeasible; exit; 

//extract state X that has kmin from the OPEN list 

X = {i: k(i) = kmin and ie S}; t(i) = CLOSED; kold = kmin; update kmin 

if mode(kold) = RAISE then 
if (d(Y)<kold&d(X)>d(y) + c(X,Y)) then 

b(X):=Y,d(X):=d(Y) + c(X,Y); 

if mode(kold) = LOWER then 
lld{X) is optimal; check if cost of neighbors can be lowered 

for each neighbor Y of X do 
rt(y)= NEW or (b(Y)= X and d(Y) * d(X) + c(X,Y))^ 

or (b(Y) * X and d(Y) > d(X) + C(X, Yj) 

b(Y).- X;insert Y into S;d(Y) = d(X) + c(X,Y); 

if then 
) 
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then 

else 
for each neighbor Y of X do 

//make sure that d(Y) is valid 

if (t(y) = NEW or (b(Y)= X and d(Y)*d(X) + c(X,Y))) then 

b(Y) := X; insert Y into S; d(Y) = d(X) + c(X, Y); 

else if (b(Y) * X and h(Y) > h(X)+c(X, Y)) then 

insert Y into S; d(Y) = d(X) + c(X, Y); 

fb(Y) * X and d(Y) > d(Y)+c(X, Y) and \ 
else if 

I t(Y) = CLOSED and d(Y) > kold 

insert Y into S; 

return; 

The MODIFY-COST function updates the arc cost function, and places the 

current state on the OPEN list for reevaluation. If the seeker detects that the cost of 

reaching a node Y from node X is no the stored value c(X,Y), then MODIFY-COST is 

called. This causes X to be placed on the OPEN list, S. The changes are propagated 

through the all descendants of the node X. In addition, MODIFY-COST takes the new 

cost and stores it in c(X,Y). 

A.3   Summary 

As implemented within this thesis, the D* algorithm runs like Dijkstra's algorithm. Since 

the information is static, the MODIFY-COST subroutine is never called into action. 

Thus, the D* algorithm performs a shortest path search in the same manner as would 

Dijkstra's algorithm. The information that is used to generate the paths in the moving 

target planner is the backpointer list. As implemented, the backpointers point to nodes, 

which are on a path to the current goal. Therefore, if the backpointer list is maintained 

from one iteration to the next, a path will always exist from the current position to the 

current goal. This fact is a result of the first iteration of the algorithm that found the 

shortest path from the seeker's initial position to the target's initial position. The 

remaining paths are computed from a target location to the next target location.  In this 
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manner, if the backpointer list computed in the next algorithm updates the value of the 

backpointer at a node, the resulting path from that node is optimal. However, for any 

node that the backpointer is defined the resulting path is not necessarily cost optimal. If 

the backpointer of node /', is not changed in the next iteration of the algorithm, then the 

resulting path from the node /' to target exists but is not cost optimal. This path 

existence argument and the maintenance of the backpointer information are the basis of 

the moving target path planner. 
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